Skip to main content

Three-dimensional Structure Databases of Biological Macromolecules

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2449))

Abstract

Databases of three-dimensional structures of proteins (and their associated molecules) provide:

  1. (a)

    Curated repositories of coordinates of experimentally determined structures, including extensive metadata; for instance information about provenance, details about data collection and interpretation, and validation of results.

  2. (b)

    Information-retrieval tools to allow searching to identify entries of interest and provide access to them.

  3. (c)

    Links among databases, especially to databases of amino-acid and genetic sequences, and of protein function; and links to software for analysis of amino-acid sequence and protein structure, and for structure prediction.

  4. (d)

    Collections of predicted three-dimensional structures of proteins. These will become more and more important after the breakthrough in structure prediction achieved by AlphaFold2.

The single global archive of experimentally determined biomacromolecular structures is the Protein Data Bank (PDB). It is managed by wwPDB, a consortium of five partner institutions: the Protein Data Bank in Europe (PDBe), the Research Collaboratory for Structural Bioinformatics (RCSB), the Protein Data Bank Japan (PDBj), the BioMagResBank (BMRB), and the Electron Microscopy Data Bank (EMDB). In addition to jointly managing the PDB repository, the individual wwPDB partners offer many tools for analysis of protein and nucleic acid structures and their complexes, including providing computer-graphic representations. Their collective and individual websites serve as hubs of the community of structural biologists, offering newsletters, reports from Task Forces, training courses, and “helpdesks,” as well as links to external software.

Many specialized projects are based on the information contained in the PDB. Especially important are SCOP, CATH, and ECOD, which present classifications of protein domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A (very rough) back-of-the-envelope calculation suggests that to store ∼50 PDB entries on punched cards in mmCIF format rather than old PDB format would cost one 8-inch-diameter tree.

  2. 2.

    In this example, the subgraph shown could be regarded as a tree, starting with the family node as the root. (Indeed, having the root at the bottom would more accurately reflect the botanical metaphor.) However, in many cases the ancestry subgraph is a directed acyclic graph but not a tree.

  3. 3.

    Sydney Brenner used to chaff Aaron Klug, saying: “Why don’t you crystallize E. coli?”

  4. 4.

    Many readers will recall that Paul Dirac famously made a similar-sounding claim about chemistry, in 1929, but this has not happened.

References

  1. (1971) Crystallography: Protein data bank. Nature New Biol 233:223

    Google Scholar 

  2. (2021) A celebration of structural biology. Nat Methods 18:427

    Google Scholar 

  3. Bordin N, Sillitoe I, Lees JG, Orengo C (2021) Tracing evolution through protein structures: Nature captured in a few thousand folds. Front Mol Biosci 8:668184

    Google Scholar 

  4. Dayhoff MO, Eck RV et al (1965) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Spring, MD

    Google Scholar 

  5. Lipscomb WN, Reeke GN Jr, Hartsuck JA, Quiocho FA, Bethge PH (1970) The structure of carboxypeptidase A. 8. Atomic interpretation at 0.2 nm resolution, a new study of the complex of glycyl-L-tyrosine with CPA, and mechanistic deductions. Philos Trans R Soc Lond B257:177–214

    Google Scholar 

  6. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank Nature Struct. Biol 10:980

    Google Scholar 

  7. wwPDB consortium (2019) Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucl Acids Res 47:D520–D528

    Google Scholar 

  8. Lesk AM (2016) Introduction to Protein Science, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  9. Seoane B, Carbone A (2021) The complexity of protein interactions unravelled from structural disorder. PLoS Comput Biol 17:e1008546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Borrell B (2009) Fraud rocks protein community. Nature 462:970

    Article  CAS  PubMed  Google Scholar 

  11. Young JY et al (2017) OneDep: Unified wwPDB system for deposition, biocuration, and validation of macromolecular structures in the PDB archive. Structure 25:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baker EN, Saenger W (1999) Deposition and release of macromolecular structural data. Acta Cryst D55:2–3

    Google Scholar 

  13. Joosten RP, Vriend G (2007) PDB improvement starts with data deposition. Science 317:195–196

    Article  CAS  PubMed  Google Scholar 

  14. Commission on Biological Macromolecules (2000) Guidelines for the deposition and release of macromolecular coordinate and experimental data. Acta Cryst D56:2

    Google Scholar 

  15. Gore S, Sanz-Garcia E, Hendrickx PMS, Gutmanas A, Westbook JD et al (2017) Validation of structures in the protein data bank. Structure 25:1916–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berjanskii M, Zhou J, Liang Y, Lin G, Wishart DS (2012) Resolution-by-proxy: a simple measure for assessing and comparing the overall quality of NMR protein structures. J Biomol NMR 53:167–180

    Google Scholar 

  17. Lawson CL, Chiu W (2018) Comparing Cryo-EM structures. J Struct Biol 204:523–526

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lawson CL, Berman HM, Chiu W (2020) Evolving data standards for cryo-EM structures. Struct Dyn 7:014701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lange J, Baakman C, Pistorius A, Krieger E, Hooft R, Joosten RP, Vriend G (2020) Facilities that make the PDB data collection more powerful. Protein Sci 29:330–344

    Article  CAS  PubMed  Google Scholar 

  20. Joosten RP, Womack T, Vriend G, Bricogne G (2009) Re-refinement from deposited X-ray data can deliver improved models for most PDB entries. Acta Cryst D65:176–185

    Google Scholar 

  21. Joosten RP et al (2009) PDB_REDO: automated re-refinement of X-ray structure models in the PDB. J Appl Cryst 42:376–384

    Article  CAS  Google Scholar 

  22. Joosten RP, Joosten K, Cohen SX, Vriend G, Perrakis A (2011) Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank. Bioinformatics 27:3392–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilkinson MD, Dumontier M, Aalbersberg IJ J, Appelton G, Axton M et al (2016) The FAIR Guiding Principles for scientific datamanagement and stewardship. Sci Data 3:160018

    Google Scholar 

  24. Armstrong DR, Berrisford JM, Conroy MJ, Gutmanas A, Anyango S et al (2020) PDBe: improved findability of macromolecular structure data in the PDB. Nucl Acids Res 48:D335–D343

    CAS  PubMed  Google Scholar 

  25. Mitsopoulos C et al (2021) canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucl Acids Res 49:D1074–1082

    Google Scholar 

  26. Orengo C et al (2020) A community proposal to integrate structural bioinformatics activities in ELIXIR (3D-Bioinfo Community) F1000Res 9:ELIXIR-278

    Google Scholar 

  27. de Chadarevian, S (2018) John Kendrew and myoglobin: Protein structure determination in the 1950s. Prot Sci 27:1136–1143

    Article  CAS  Google Scholar 

  28. Phillips SE (2018) Structure and refinement of oxymyoglobin at 1.6 Å resolution. J Mol Biol 142:531–554

    Article  Google Scholar 

  29. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  30. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krogh A, Brown B, Mian IS, Sjölander K, Haussler D (1994) Hidden Markov models in computational biology. Applications to protein modeling. J Mol Biol 235:1501–1531

    Google Scholar 

  32. Eddy SR (1996) Hidden Markov models. Curr Opin Struct Biol 6:361–365

    Article  CAS  PubMed  Google Scholar 

  33. Eddy SR (1998) Profile Hidden Markov Models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  34. Mirdita M, Steinegger M, Söding J (2019) MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35:2856–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Cryst D60:2256–2268

    CAS  Google Scholar 

  36. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L et al (2021) RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucl Acids Res 49:D437–D451

    Article  CAS  PubMed  Google Scholar 

  37. Sumanaweera D, Allison L, Konagurthu AS (2019) Statistical compression of protein sequences and inference of marginal probability landscapes over competing alignments using finite state models and Dirichlet priors. Bioinformatics 35:i360–i369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Collier JH, Allison L, Lesk AM, Stuckey PJ, Gardia de la Banda M, Konagurthu AS (2017) Statistical inference of protein structural alignments using information and compression. Bioinformatics 33:1005–1013

    Google Scholar 

  39. Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) MUSTANG: a multiple structural alignment algorithm. Proteins Struct Funct Bioinf 64:559–574

    Article  CAS  Google Scholar 

  40. Collier JH, Lesk AM, Garcia de la Banda M, Konagurthu AS (2012) Super: a web server to rapidly screen superposable oligopeptide fragments from the protein data bank. Nucl Acids Res 40:W334–W339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Konagurthu AS, Lesk AM, Allison L (2012) Minimum Message Length inference of secondary structure from protein coordinate data. Bioinformatics 28:i97–i105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Konagurthu AS, Subramanian R, Allison L, Abramson D, Stuckey PJ, Gardia de la Banda M, Lesk AM (2021) Universal architectural concepts underlying protein folding patterns. Front Mol Biosci 7:612920

    Google Scholar 

  43. Bourne PE, Berman HM, McMahon B, Watenpaugh KD, Westbrook J, Fitzgerald PMD (1977) The Macromolecular crystallographic information file (mmCIF). Methods Enzymol 277:571–590

    Google Scholar 

  44. Wetlaufer DB (1973) Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci U S A 70:697–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    CAS  PubMed  Google Scholar 

  46. Orengo C, Jones D, Thornton JM (1994) Protein superfamilies and domain superfolds. Nature 372:631–634

    Google Scholar 

  47. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH – a hierarchic classification of protein domain structures. Structure 5:1093–1108

    Article  CAS  PubMed  Google Scholar 

  48. Chandonia JM, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311:347–351

    Article  CAS  PubMed  Google Scholar 

  49. Fox NK, Brenner SE, Chandonia J-M (2015) The value of protein structure classification information—Surveying the scientific literature. Proteins 83:2025–2038

    Google Scholar 

  50. Fox NK, Brenner SE, Chandonia J-M (2014) SCOPe: Structural Classification of Proteins—extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42:D304–309

    Google Scholar 

  51. Lesk AM, Chothia C (1986) The response of protein structures to amino acid sequence changes. Philos Trans R Soc Lond A317:345–356

    Google Scholar 

  52. Greene LH, Lewis TE, Addou S, Cuff A, Dallman T et al (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res 35:D291–D297

    Article  CAS  PubMed  Google Scholar 

  53. Taylor WR, Orengo CA (1989) Protein structure alignment. J Mol Biol 208:1–22

    Article  CAS  PubMed  Google Scholar 

  54. Orengo CA, Taylor WR (1996) SSAP: Sequential structure alignment program for protein structure comparison. Methods Enzymol 266:617–635

    Article  CAS  PubMed  Google Scholar 

  55. Cheng H, Liao Y, Schaeffer RD, Grishin NV (2015) Manual classification strategies in the ECOD database. Proteins 83:1238–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheng H, Schaeffer RD, Liao Y et al (2014) ECOD: an evolutionary classification of protein domains. PLoS Comput Biol 10:e1003926

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sillitoe I, Lewis TE, Cuff A, Das S, Ashford P, Dawson NL, Furnham N, Laskowski RA, Lee D, Lees JG, Lehtinen S, Studer RA, Thornton J, Orengo CA (2015) CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. 43(Database issue):D376–81. https://doi.org/10.1093/nar/gku947

  58. Orengo CA, Pearl FM, Bray JE, Todd AE, Martin AC, Lo Conte L, Thornton JM (1999) The CATH Database provides insights into protein structure/function relationships. Nucl Acids Res. 27:275–279

    Google Scholar 

  59. Sillitoe I, Dawson N, Thornton J, Orengo C (2015) The history of the CATH structural classification of protein domains. Biochemie 119:209–217

    Article  CAS  Google Scholar 

  60. Sillitoe I, Dawson N, Lewis TE, Das S, Lees JG et al (2019) CATH: expanding the horizons of structure-based functional annotations for genome sequences. Nucleic Acids Res 47:D280–D284

    Article  CAS  PubMed  Google Scholar 

  61. Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, Orengo CA, Sillitoe I (2017) CATH: an expanded resource to predict protein function through structure and sequence. Nucl Acids Res. 45:D289–D295

    Google Scholar 

  62. Das S, Sillitoe I, Lee D, Lees JG, Dawson NL, Ward J, Orengo CA (2015) CATH FunFHMMer web server: protein functional annotations using functional family assignments. Nucleic Acids Res 43:W148–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Levitt M, Chothia C (1976) Structural patterns in globular proteins. Nature 261:552–558

    Article  CAS  PubMed  Google Scholar 

  64. Michie AD, Orengo CA, Thornton JM (1996) Analysis of domain structural class using an automated class assignment protocol. J Mol Biol 262:168–185

    Article  CAS  PubMed  Google Scholar 

  65. Sillitoe I, Bordin N, Dawson N, Waman VP, Ashford P et al (2021) CATH: increased structural coverage of functional space. Nucl Acids Res 49:D226–273

    Article  CAS  Google Scholar 

  66. Presnell SR, Cohen FE (1989) Topological distribution of four-α-helix bundles. Proc Natl Acad Sci U S A 86:6592–6596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Furnham N, Sillitoe I, Holliday GL et al (2012) FunTree: a resource for exploring the functional evolution of structurally defined enzyme superfamilies. Nucleic Acids Res. 40:D776–D782

    Article  CAS  PubMed  Google Scholar 

  68. The Gene Ontology Consortium: Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  Google Scholar 

  69. Zhou N, Jiang Y, Bergquist TR et al (2019) The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biol 20:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Valdar WS, Thornton JM (2001) Protein-protein interfaces: analysis of amino acid conservation in homodimers. Proteins 42:108–124

    Article  CAS  PubMed  Google Scholar 

  71. Chandonia J-M, Fox NK, Brenner SE (2017) SCOPe: Manual curation and artifact removal in the Structural Classification of Proteins – extended database. J Mol Biol 429:348–355

    Google Scholar 

  72. Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin AG (2014) SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res 42:D310–D314

    Article  CAS  PubMed  Google Scholar 

  73. Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin AG (2018) Investigating protein structure and evolution with SCOP2. Curr Protocols Bioinf 49:1.26.1–1.26.21

    Google Scholar 

  74. Andreeva A, Kulesha E, Gough J, Murzin AG (2020) The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res 48:D376–D382

    Article  CAS  PubMed  Google Scholar 

  75. Lesk AM (2021) Protein science. Oxford University Press, Oxford

    Google Scholar 

  76. Das S, Dawson NL, Orengo CA (2015) Diversity in protein domain superfamilies. Curr Opin Genet Dev 35:40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grishin NV (2001) Fold change in evolution of protein structures. J Struct Biol 134:167–185

    Article  CAS  PubMed  Google Scholar 

  78. Akiva E, Brown S, Almonacid DE, Barber AE, II, Custer AF et al (2014) The structure-function linkage database. Nucl Acids Res 42:D521–530

    Article  CAS  PubMed  Google Scholar 

  79. Jumper J, Evans R, Pritzel A et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. https://doi.org/10.1038/s41586-021-03819-2

  80. Lupas AN, Pereira J, Alva V, Merino F, Coles M, Hartmann MD (2021) The breakthrough in protein structure prediction. Biochem J 478:1885–1890

    Article  CAS  PubMed  Google Scholar 

  81. Hopf TA et al (2014) Sequence co-evolution gives 3D contacts and structures of protein complexes. eLife 3:e03430

    Article  PubMed Central  Google Scholar 

  82. Wodak S, Velankar S, Sternberg MJE (2020) Modeling protein interactions and complexes in CAPRI: Seventh CAPRI evaluation meeting, April 3–5 EMBL-EBI, Hinxton, UK. Proteins Struct Funct Bioinf 88:913–915. (And other articles in that issue.)

    Google Scholar 

  83. Humphreys IR, Pei J, Baek M, Krishnakumar A, Anishchenko, A et al (2021) Computed structures of core eukaryotic protein complexes. Science 374, 1340. https://doi.org/10.1126/science.abd9776

  84. Gao YQ, Yang W, Karplus M (2005) A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase. Cell 123:195–205

    Article  CAS  PubMed  Google Scholar 

  85. Pu J, Karplus M (2008) How subunit coupling produces the γ-subunit rotary motion in F1-ATPase. Proc Nat’l Acad Sci U S A 105:1192–1197

    Google Scholar 

  86. Arnold FH (2019) Innovation by evolution: Bringing new chemistry to life. Angew Chem Int Ed 58:14420–14426

    Article  CAS  Google Scholar 

  87. Siegel JB, Zanghellini A, Lovick HM et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329:309–313

    Google Scholar 

  88. Privett HK, Kiss G, Lee TM et al (2012) Iterative approach to computational enzyme design. Proc Nat’l Acad Sci U S A 109:3790–3795

    Google Scholar 

Download references

Acknowledgements

We thank A.G. Murzin and A. Andreeva for helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur M. Lesk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Waman, V.P., Orengo, C., Kleywegt, G.J., Lesk, A.M. (2022). Three-dimensional Structure Databases of Biological Macromolecules. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 2449. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2095-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2095-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2094-6

  • Online ISBN: 978-1-0716-2095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics