Skip to main content

IMEx Databases: Displaying Molecular Interactions into a Single, Standards-Compliant Dataset

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2449))

Abstract

Molecular interaction databases aim to systematically capture and organize the experimental interaction information described in the scientific literature. These data can then be used to perform network analysis, to assign putative roles to uncharacterized proteins and to investigate their involvement in cellular pathways.

This chapter gives a brief overview of publicly available molecular interaction databases and focuses on the members of the IMEx Consortium, on their curation policies and standard data formats. All of the goals achieved by IMEx databases over the last 15 years, the data types provided and the many different ways in which such data can be utilized by the research community, are described in detail. The IMEx databases curate molecular interaction data to the highest caliber, following a detailed curation model and supplying rich metadata by employing common curation rules and harmonized standards. The IMEx Consortium provides comprehensively annotated molecular interaction data integrated into a single, non-redundant, open access dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113. https://doi.org/10.1038/nrg1272

    Article  CAS  PubMed  Google Scholar 

  2. Yu D, Kim M, Xiao G, Hwang TH (2013) Review of biological network data and its applications. Genomics Inform 11:200–210. https://doi.org/10.5808/GI.2013.11.4.200

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68. https://doi.org/10.1038/nrg2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Snider J, Kotlyar M, Saraon P et al (2015) Fundamentals of protein interaction network mapping. Mol Syst Biol 11:848. https://doi.org/10.15252/msb.20156351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Calderone A, Iannuccelli M, Peluso D, Licata L (2020) Using the MINT database to search protein interactions. Curr Protoc Bioinform 69:e93. https://doi.org/10.1002/cpbi.93

    Article  CAS  Google Scholar 

  6. Orchard S, Ammari M, Aranda B et al (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42. https://doi.org/10.1093/nar/gkt1115

  7. Oughtred R, Rust J, Chang C et al (2021) The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci 30:187–200. https://doi.org/10.1002/pro.3978

    Article  CAS  PubMed  Google Scholar 

  8. Calderone A, Castagnoli L, Cesareni G (2013) mentha: a resource for browsing integrated protein-interaction networks. Nat Methods 10:690–691. https://doi.org/10.1038/nmeth.2561

    Article  CAS  PubMed  Google Scholar 

  9. De Las RJ, Fontanillo C (2012) Protein-protein interaction networks: unraveling the wiring of molecular machines within the cell. Brief Funct Genomics 11:489–496. https://doi.org/10.1093/bfgp/els036

    Article  CAS  Google Scholar 

  10. Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  11. Kotlyar M, Pastrello C, Malik Z, Jurisica I (2019) IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species. Nucleic Acids Res 47:D581–D589. https://doi.org/10.1093/nar/gky1037

    Article  CAS  PubMed  Google Scholar 

  12. Tran L, Hamp T, Rost B (2018) ProfPPIdb: Pairs of physical protein-protein interactions predicted for entire proteomes. PLoS One 13:e0199988. https://doi.org/10.1371/journal.pone.0199988

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deutsch EW, Orchard S, Binz PA, et al (2017) Proteomics standards initiative: fifteen years of progress and future work.

    Google Scholar 

  14. Kerrien S, Orchard S, Montecchi-Palazzi L et al (2007) Broadening the horizon—level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biol. https://doi.org/10.1186/1741-7007-5-44

  15. Sivade Dumousseau M, Alonso-López D, Ammari M et al (2018) Encompassing new use cases—level 3.0 of the HUPO-PSI format for molecular interactions. BMC Bioinformatics 19(134). https://doi.org/10.1186/s12859-018-2118-1

  16. Porras P, Barrera E, Bridge A et al (2020) Towards a unified open access dataset of molecular interactions. Nat Commun 11:6144. https://doi.org/10.1038/s41467-020-19942-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Breuer K, Foroushani AK, Laird MR, et al (2013) InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res 41:D1228-D1233. doi: https://doi.org/10.1093/nar/gks1147

  18. Goll J, Rajagopala SV, Shiau SC et al (2008) MPIDB: the microbial protein interaction database. Bioinformatics (Oxford, England) 24:1743–1744. https://doi.org/10.1093/bioinformatics/btn285

    Article  CAS  Google Scholar 

  19. Salwinski L, Miller CS, Smith AJ et al (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–D451. https://doi.org/10.1093/nar/gkh086

    Article  PubMed  PubMed Central  Google Scholar 

  20. Meldal BHM, Bye-A-Jee H, Gajdoš L et al (2019) Complex Portal 2018: extended content and enhanced visualization tools for macromolecular complexes. Nucleic Acids Res 47:D550–D558. https://doi.org/10.1093/nar/gky1001

    Article  CAS  PubMed  Google Scholar 

  21. Giurgiu M, Reinhard J, Brauner B et al (2019) CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res 47:D559–D563. https://doi.org/10.1093/nar/gky973

    Article  CAS  PubMed  Google Scholar 

  22. Ammari MG, Gresham CR, McCarthy FM, Naduri B (2016) HPIDB 2.0: a curated database for host–pathogen interactions. Database 2016. https://doi.org/10.1093/database/baw103

  23. Perfetto L, Pastrello C, Del-Toro N et al (2020) The IMEx coronavirus interactome: an evolving map of Coronaviridae-host molecular interactions. Database (Oxford) 2020. https://doi.org/10.1093/database/baaa096

  24. Wilkinson MD, Dumontier M, Aalbersberg IJJ et al (2016) The FAIR guiding principles for scientific data management and stewardship. Scientific Data 3:160018. https://doi.org/10.1038/sdata.2016.18

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nature Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  Google Scholar 

  26. Gene Ontology Consortium (2021) The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res 49:D325–D334. https://doi.org/10.1093/nar/gkaa1113

    Article  CAS  Google Scholar 

  27. Montecchi-Palazzi L, Beavis R, Binz P-A et al (2008) The PSI-MOD community standard for representation of protein modification data. Nat Biotechnol 26:864–866. https://doi.org/10.1038/nbt0808-864

    Article  CAS  PubMed  Google Scholar 

  28. Jeske L, Placzek S, Schomburg I et al (2019) BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res 47:D542–D549. https://doi.org/10.1093/nar/gky1048

    Article  CAS  PubMed  Google Scholar 

  29. Sarntivijai S, Lin Y, Xiang Z et al (2014) CLO: The cell line ontology. J Biomed Semantics 5:37. https://doi.org/10.1186/2041-1480-5-37

    Article  PubMed  PubMed Central  Google Scholar 

  30. Drysdale R, Cook CE, Petryszak R et al (2020) The ELIXIR core data resources: fundamental infrastructure for the life sciences. Bioinformatics 36:2636–2642. https://doi.org/10.1093/bioinformatics/btz959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mosca R, Pons T, Céol A et al (2013) Towards a detailed atlas of protein-protein interactions. Curr Opin Struct Biol 23:929–940. https://doi.org/10.1016/j.sbi.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  32. UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–D489. https://doi.org/10.1093/nar/gkaa1100

    Article  CAS  Google Scholar 

  33. Hastings J, Owen G, Dekker A et al (2016) ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res 44:D1214–D1219. https://doi.org/10.1093/nar/gkv1031

    Article  CAS  PubMed  Google Scholar 

  34. Howe KL, Achuthan P, Allen J et al (2021) Ensembl 2021. Nucleic Acids Res 49:D884–D891. https://doi.org/10.1093/nar/gkaa942

    Article  CAS  PubMed  Google Scholar 

  35. Harrison PW, Ahamed A, Aslam R et al (2021) The European nucleotide archive in 2020. Nucleic Acids Res 49:D82–D85. https://doi.org/10.1093/nar/gkaa1028

    Article  CAS  PubMed  Google Scholar 

  36. RNAcentral (2021) SSecondary structure integration, improved sequence search and new member databases - PubMed. https://pubmed.ncbi.nlm.nih.gov/33106848/. Accessed 25 May 2021

  37. Montecchi-Palazzi L, Kerrien S, Reisinger F et al (2009) The PSI semantic validator: a framework to check MIAPE compliance of proteomics data. Proteomics 9:5112–5119. https://doi.org/10.1002/pmic.200900189

    Article  CAS  PubMed  Google Scholar 

  38. Hermjakob H, Montecchi-Palazzi L, Bader G et al (2004) The HUPO PSI’s molecular interaction format—a community standard for the representation of protein interaction data. Nat Biotechnol 22:177–183. https://doi.org/10.1038/nbt926

    Article  CAS  PubMed  Google Scholar 

  39. Perfetto L, Acencio ML, Bradley G et al (2019) CausalTAB: the PSI-MITAB 2.8 updated format for signalling data representation and dissemination. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz132

  40. Villaveces JM, Jiménez RC, Porras P et al (2015) Merging and scoring molecular interactions utilising existing community standards: tools, use-cases and a case study. Database (Oxford) 2015. https://doi.org/10.1093/database/bau131

  41. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. IMEx Consortium Curators, Del-Toro N, Duesbury M et al (2019) Capturing variation impact on molecular interactions in the IMEx Consortium mutations data set. Nat Commun 10:10. https://doi.org/10.1038/s41467-018-07709-6

    Article  CAS  Google Scholar 

  43. Landrum MJ, Chitipiralla S, Brown GR et al (2020) ClinVar: improvements to accessing data. Nucleic Acids Res 48:D835–D844. https://doi.org/10.1093/nar/gkz972

    Article  CAS  PubMed  Google Scholar 

  44. Buniello A, MacArthur JAL, Cerezo M et al (2019) The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47:D1005–D1012. https://doi.org/10.1093/nar/gky1120

    Article  CAS  PubMed  Google Scholar 

  45. Jassal B, Matthews L, Viteri G et al (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48:D498–D503. https://doi.org/10.1093/nar/gkz1031

    Article  CAS  PubMed  Google Scholar 

  46. Lo Surdo P, Calderone A, Iannuccelli M et al (2018) DISNOR: a disease network open resource. Nucleic Acids Res 46. https://doi.org/10.1093/nar/gkx876

  47. Iannuccelli M, Micarelli E, Surdo PL et al (2020) CancerGeneNet: linking driver genes to cancer hallmarks. Nucleic Acids Res 48:D416–D421. https://doi.org/10.1093/nar/gkz871

    Article  CAS  PubMed  Google Scholar 

  48. Ragueneau E, Shrivastava A, Morris JH et al (2021) IntAct App: a Cytoscape application for molecular interaction network visualisation and analysis. Bioinformatics. https://doi.org/10.1093/bioinformatics/btab319

  49. Anderson WP, Global Life Science Data Resources Working Group (2017) Data management: a global coalition to sustain core data. Nature 543:179. https://doi.org/10.1038/543179a

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luana Licata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Porras, P., Orchard, S., Licata, L. (2022). IMEx Databases: Displaying Molecular Interactions into a Single, Standards-Compliant Dataset. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 2449. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2095-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2095-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2094-6

  • Online ISBN: 978-1-0716-2095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics