Skip to main content

Computational Pipeline for Rational Drug Combination Screening in Patient-Derived Cells

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2449))

Abstract

In many complex diseases, such as cancers, resistance to monotherapies easily occurs, and longer-term treatment responses often require combinatorial therapies as next-line regimens. However, due to a massive number of possible drug combinations to test, there is a need for systematic and rational approaches to finding safe and effective drug combinations for each individual patient. This protocol describes an ecosystem of computational methods to guide high-throughput combinatorial screening that help experimental researchers to identify optimal drug combinations in terms of synergy, efficacy, and/or selectivity for further preclinical and clinical investigation. The methods are demonstrated in the context of combinatorial screening in primary cells of leukemia patients, where the translational aim is to identify drug combinations that show not only high synergy but also maximal cancer-selectivity. The mechanism-agnostic and cost-effective computational methods are widely applicable to various cancer types, which are amenable to drug testing, as the computational methods take as input only the phenotypic measurements of a subset of drug combinations, without requiring target information or genomic profiles of the patient samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boshuizen J, Peeper DS (2020) Rational cancer treatment combinations: an urgent clinical need. Mol Cell 78(6):1002–1018. https://doi.org/10.1016/j.molcel.2020.05.031

    Article  CAS  PubMed  Google Scholar 

  2. Sicklick JK, Kato S, Okamura R et al (2019) Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nat Med 25(5):744–750. https://doi.org/10.1038/s41591-019-0407-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bulusu KC, Guha R, Mason DJ et al (2016) Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives. Drug Discov Today 21(2):225–238. https://doi.org/10.1016/j.drudis.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  4. Adam G, Rampášek L, Safikhani Z et al (2020) Machine learning approaches to drug response prediction: challenges and recent progress. Npj Precis Oncol 4(1). https://doi.org/10.1038/s41698-020-0122-1

  5. Narayan RS, Molenaar P, Teng J et al (2020) A cancer drug atlas enables synergistic targeting of independent drug vulnerabilities. Nat Commun 11(1). https://doi.org/10.1038/s41467-020-16735-2

  6. Ling A, Huang RS (2020) Computationally predicting clinical drug combination efficacy with cancer cell line screens and independent drug action. Nat Commun 11(1). https://doi.org/10.1038/s41467-020-19563-6

  7. Eduati F, Jaaks P, Wappler J et al (2020) Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies. Mol Syst Biol 16(6):10.15252/msb.209690

    Article  Google Scholar 

  8. Julkunen H, Cichonska A, Gautam P et al (2020) Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects. Nat Commun 11(1). https://doi.org/10.1038/s41467-020-19950-z

  9. Ianevski A, Lahtela J, Javarappa KK et al (2021) Patient-tailored design for selective co-inhibition of leukemic cell subpopulations. Sci Adv 7(8):eabe4038. https://doi.org/10.1126/sciadv.abe4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuenzi BM, Park J, Fong SH et al (2020) Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 38(5):672–684.e6. https://doi.org/10.1016/j.ccell.2020.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pulkkinen OI, Gautam P, Mustonen V et al (2020) Multiobjective optimization identifies cancer-selective combination therapies. PLoS Comput Biol 16(12):e1008538. https://doi.org/10.1371/journal.pcbi.1008538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Menden MP, Wang D, Mason MJ et al (2019) Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun 10(1). https://doi.org/10.1038/s41467-019-09799-2

  13. Tang J, Gautam P, Gupta A et al (2019) Network pharmacology modeling identifies synergistic Aurora B and ZAK interaction in triple-negative breast cancer. Npj Syst Biol Appl 5(1). https://doi.org/10.1038/s41540-019-0098-z

  14. Yang M, Jaaks P, Dry J et al (2020) Stratification and prediction of drug synergy based on target functional similarity. Npj Syst Biol Appl 6(1). https://doi.org/10.1038/s41540-020-0136-x

  15. Madani Tonekaboni SA, Soltan Ghoraie L, Manem VSK et al (2016) Predictive approaches for drug combination discovery in cancer. Brief Bioinform 19(2):263–276. https://doi.org/10.1093/bib/bbw104

    Article  CAS  PubMed Central  Google Scholar 

  16. Vlot AHC, Aniceto N, Menden MP et al (2019) Applying synergy metrics to combination screening data: agreements, disagreements and pitfalls. Drug Discov Today 24(12):2286–2298. https://doi.org/10.1016/j.drudis.2019.09.002

    Article  CAS  PubMed  Google Scholar 

  17. Flobak Å, Vazquez M, Lægreid A et al (2017) CImbinator: a web-based tool for drug synergy analysis in small- and large-scale datasets. Bioinformatics 33(15):2410–2412. https://doi.org/10.1093/bioinformatics/btx161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Di Veroli GY, Fornari C, Wang D et al (2016) Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32(18):2866–2868. https://doi.org/10.1093/bioinformatics/btw230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ianevski A, He L, Aittokallio T, Tang J (2017) SynergyFinder: a web application for analyzing drug combination dose–response matrix data. Bioinformatics 33(15):2413–2415. https://doi.org/10.1093/bioinformatics/btx162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ianevski A, Giri AK, Aittokallio T (2020) SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res 48(W1):W488–W493. https://doi.org/10.1093/nar/gkaa216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haltia U-M, Andersson N, Yadav B et al (2017) Systematic drug sensitivity testing reveals synergistic growth inhibition by dasatinib or mTOR inhibitors with paclitaxel in ovarian granulosa cell tumor cells. Gynecol Oncol 144(3):621–630. https://doi.org/10.1016/j.ygyno.2016.12.016

    Article  CAS  PubMed  Google Scholar 

  22. He L, Tang J, Andersson EI et al (2018) Patient-customized drug combination prediction and testing for T-cell prolymphocytic leukemia patients. Cancer Res 78(9):2407–2418. https://doi.org/10.1158/0008-5472.can-17-3644

    Article  CAS  PubMed  Google Scholar 

  23. Herring S, Oda JM, Wagoner J et al (2021) Inhibition of arenaviruses by combinations of orally available approved drugs. Antimicrob Agents Chemother 65(4). https://doi.org/10.1128/aac.01146-20

  24. Melvold K, Giliberto M, Karlsen L et al. (2022) Mcl‐1 and Bcl‐xL levels predict responsiveness to dual MEK/Bcl‐2 inhibition in B‐cell malignancies. Molecular Oncology (in press). https://doi.org/10.1002/1878-0261.13153

    Google Scholar 

  25. White JM, Schiffer JT, Bender Ignacio RA et al. (2021) Drug combinations as a first line of defense against coronaviruses and other emerging viruses. mBio 12(6):e0334721. https://doi.org/10.1128/mbio.03347-21

    Google Scholar 

  26. Ianevski A, Giri AK, Gautam P et al (2019) Prediction of drug combination effects with a minimal set of experiments. Nat Mach Intell 1(12):568–577. https://doi.org/10.1038/s42256-019-0122-4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ianevski A, Timonen S, Kononov A et al (2020) SynToxProfiler: an interactive analysis of drug combination synergy, toxicity and efficacy. PLoS Comput Biol 16(2):e1007604. https://doi.org/10.1371/journal.pcbi.1007604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Skånland SS (2018) Phospho flow cytometry with fluorescent cell barcoding for single cell signaling analysis and biomarker discovery. J Vis Exp 140. https://doi.org/10.3791/58386

  29. Scielzo C, Ghia P (2020) Modeling the leukemia microenviroment in vitro. Front Oncol 10. https://doi.org/10.3389/fonc.2020.607608

  30. Crassini K, Shen Y, Mulligan S et al (2016) Modeling the chronic lymphocytic leukemia microenvironmentin vitro. Leuk Lymphoma 58(2):266–279. https://doi.org/10.1080/10428194.2016.1204654

    Article  CAS  PubMed  Google Scholar 

  31. Mpindi JP, Yadav B, Östling P et al (2016) Consistency in drug response profiling. Nature 540(7631):E5–E6. https://doi.org/10.1038/nature20171

    Article  CAS  PubMed  Google Scholar 

  32. Garnett MJ, Edelman EJ, Heidorn SJ et al (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483(7391):570–575. https://doi.org/10.1038/nature11005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gupta A, Gautam P, Wennerberg K et al (2020) A normalized drug response metric improves accuracy and consistency of anticancer drug sensitivity quantification in cell-based screening. Commun Biol 3(1). https://doi.org/10.1038/s42003-020-0765-z

  34. Skånland SS, Cremaschi A, Bendiksen H et al (2019) An in vitro assay for biomarker discovery and dose prediction applied to ibrutinib plus venetoclax treatment of CLL. Leukemia 34(2):478–487. https://doi.org/10.1038/s41375-019-0569-7

    Article  CAS  PubMed  Google Scholar 

  35. Yadav B, Pemovska T, Szwajda A et al (2014) Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Sci Rep 4(1). https://doi.org/10.1038/srep05193

  36. Gadagkar SR, Call GB (2015) Computational tools for fitting the Hill equation to dose–response curves. J Pharmacol Toxicol Methods 71:68–76. https://doi.org/10.1016/j.vascn.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  37. Di Veroli GY, Fornari C, Goldlust I et al (2015) An automated fitting procedure and software for dose-response curves with multiphasic features. Sci Rep 5(1). https://doi.org/10.1038/srep14701

  38. Abbas-Aghababazadeh F, Lu P, Fridley BL (2019) Nonlinear mixed-effects models for modeling in vitro drug response data to determine problematic cancer cell lines. Sci Rep 9(1). https://doi.org/10.1038/s41598-019-50936-0

  39. Yadav B, Wennerberg K, Aittokallio T et al (2015) Searching for drug synergy in complex dose–response landscapes using an interaction potency model. Comput Struct Biotechnol J 13:504–513. https://doi.org/10.1016/j.csbj.2015.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26(3):585–615. https://doi.org/10.1111/j.1744-7348.1939.tb06990.x

    Article  CAS  Google Scholar 

  41. Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3(6):285–290

    CAS  PubMed  Google Scholar 

  42. Berenbaum MC (1989) What is synergy? Pharmacol Rev 41(2):93–141

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the High-Throughput Chemical Biology Screening Platform at the Centre for Molecular Medicine Norway (NCMM) for assistance with the combination screening experiments. The work was supported by the grants from Helse Sør-Øst (2020026 to TA), the Norwegian Cancer Society (216104 to TA), the Radium Hospital Foundation (TA), the Academy of Finland (310507, 313267, 326238, and 344698 to TA), the Sigrid Jusélius Foundation (TA), the Finnish Cancer Foundation (TA), and the ERANET PerMed Co-Fund (projects JAKSTAT-TARGET to TA and CLL-CLUE to TA and SS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tero Aittokallio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Athanasiadis, P., Ianevski, A., Skånland, S.S., Aittokallio, T. (2022). Computational Pipeline for Rational Drug Combination Screening in Patient-Derived Cells. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 2449. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2095-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2095-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2094-6

  • Online ISBN: 978-1-0716-2095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics