Skip to main content

Uses and Abuses of the Atomic Displacement Parameters in Structural Biology

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2449))

Abstract

B-factors determined with X-ray crystallographic analyses are commonly used to estimate the flexibility degree of atoms, residues, and molecular moieties in biological macromolecules. In this chapter, the most recent studies and applications of B-factors in protein engineering and structural biology are briefly summarized. Particular emphasis is given to the limitations in using B-factors, in order to prevent inappropriate applications. It is eventually predicted that future applications will involve anisotropically refined B-factors, deep learning, and data produced by cryo-EM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ringe D, Petsko GA (1986) Study of protein dynamics by X-ray diffraction. Methods Enzym 131:389–433

    Article  CAS  Google Scholar 

  2. Vihinen M (1987) Relationship of protein flexibility to thermostability. Protein Eng 1:477–480

    Article  CAS  PubMed  Google Scholar 

  3. Carugo O, Argos P (1999) Reliability of atomic displacement parameters in protein crystal structures. Acta Crystallogr D Biol Crystallogr 55(Pt 2):473–478. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10089358

  4. Sun Z, Liu Q, Qu G, Feng Y, Reetz MT (2019) Utility of B-factors in protein science: interpreting rigidity, flexibility, and internal motion and engineering. Chem Rev 119:1626–1665

    Article  CAS  PubMed  Google Scholar 

  5. Carugo O (2018) Atomic displacement parameters in structural biology. Amino Acids 50:775–786. https://doi.org/10.1007/s00726-018-2574-y

  6. Urzhumtsev A, Afonine PV, Adams PD (2013) TLS from fundamentals to practice. Crystallogr Rev 19:230–270

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zucker F, Champ PC, Merritt EA (2010) Validation of crystallographic models containing TLS or other descriptions of anisotropy. Acta Cryst D66:889–900

    Google Scholar 

  8. Longhi S, Czjzek M, Lamzin V, Nicolas A, Cambillau C (1997) Atomic resolution (1.0 Å) crystal structure of Fusarium solani cutinase: stereochemical analysis. J Mol Biol 8:730–737

    Google Scholar 

  9. Longhi S, Czjzek M, Cambillau C (1998) Messages from ultrahigh resolution crystal structures. Curr Opin Struct Biol 8:730–737

    Article  CAS  PubMed  Google Scholar 

  10. Dauter Z, Lamzin VS, Wilson KS (1997) The benefits of atomic resolution. Curr Opin Struct Biol 7:681–688

    Article  CAS  PubMed  Google Scholar 

  11. Schimdt A, Lamzin VS (2002) Veni, vidi, cisi - atomic resolution unravelling the mysteries of protein function. Curr Opin Struct Biol 12:698–703

    Article  Google Scholar 

  12. Carugo O, Argos P (1998) Accessibility to internal cavities and ligand binding sites monitored by protein crystallographic thermal factors. Proteins 31:201–213

    Article  CAS  PubMed  Google Scholar 

  13. Luedemann S, Carugo O, Wade RC (1997) Substrate access to cytochrome P450can: a comparison of a thermal motion pathway analysis with molecular dynamics simulation data. J Mol Model 3:369–374. http://www.springerlink.com/content/833abbxreerlxdae/fulltext.pdf

  14. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure 11:1453–1459. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14604535

  15. Mauno V, Esa T, Pentti R (1994) Accuracy of protein flexibility predictions. Proteins 19:141–149

    Article  Google Scholar 

  16. Carugo O, Argos P (1997) Correlation between side chain mobility and conformation in protein structures. Protein Eng 10:777–787. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9342144

  17. Loerting T, Fuentes-Landete V, Tonauer CM, Gasser TM (2020) Open questions on the structures of crystalline water ice. Commun Chem 3:109

    Article  CAS  Google Scholar 

  18. Mondal A, Bhattacharya B, Das S, Bhunia S, Chowdhury R, Dey S et al (2020) Metal-like ductility in organic plastic crystals: role of molecular shape and dihydrogen bonding interactions in aminoboranes. Angew Chem Int Ed 59:10971–10980

    Article  CAS  Google Scholar 

  19. André D, Dworkin A, Szwarc H, Céolin R, Agafonov V, Fabre C et al (1992) Molecular packing of fullerene C60 at room temperature. Mol Phys 76:1311–1317

    Article  Google Scholar 

  20. Quo Y, Karasawa N, Goddard WAI (1991) Prediction of fullerene packing in C60 and C70 crystals. Nature 351:464–467

    Article  Google Scholar 

  21. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497

    Article  CAS  PubMed  Google Scholar 

  22. Weichenberger CX, Afonine PV, Kantardjieff K, Rupp B (2015) The solvent component of macromolecular crystals. Acta Cryst D71:1023–1038

    Google Scholar 

  23. Carugo O (2016) Statistical survey of the buried waters in the Protein Data Bank. Amino Acids 48:193–202. https://doi.org/10.1007/s00726-015-2064-4

  24. Carugo O (2017) Protein hydration: investigation of globular protein crystal structures. Int J Biol Macromol 99:160–165

    Article  CAS  PubMed  Google Scholar 

  25. Schrauber H, Eisenhaber F, Argos P (1993) Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. J Mol Biol 230:592–612

    Article  CAS  PubMed  Google Scholar 

  26. Weininger U, Moding K, Akke M (2014) Ring flips revisited: (13)C relaxation dispersion measurements of aromatic side chain dynamics and activation barriers in basic pancreatic trypsin inhibitor. Biochemistry 53:4519–4525

    Article  CAS  PubMed  Google Scholar 

  27. Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic, New York

    Google Scholar 

  28. Carugo O, Djinovic-Carugo K (2005) When X-rays modify the protein structure: radiation damage at work. Trends Biochem Sci 30:213–219. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCV-4FN5KNX-5&_user=464575&_coverDate=04%2F30%2F2005&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000022258&_version=1&_urlVersion=0&_userid=464575&md5=1d9dfca32d4ed0cb7ec01b83732d6520

  29. Garman EF, Owen RL (2006) Cryocooling and radiation damage in macromolecular crystallography. Acta Crystallogr D62:32–47

    CAS  Google Scholar 

  30. Holton JM (2009) A beginner’s guide to radiation damage. J Synchrotron Radiat 16:133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Woolfson M (1997) An introduction to X-ray crystallography. Cambridge University Press, Cambridge

    Book  Google Scholar 

  32. Drenth J (1994) Principles of protein X-ray crystallography. Springer, New York

    Book  Google Scholar 

  33. Giacovazzo C, Monaco HL, Artioli G, Viterbo D, Ferraris G, Gilli G et al (2002) Fundamentals of crystallography. Oxford University Press, Oxford

    Google Scholar 

  34. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  35. Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Cryst D66:12–21

    Google Scholar 

  36. Hintze BJ, Lewis SM, Richardson JS, Richardson DC (2016) Molprobity’s ultimate rotamer-library distributions for model validation. Proteins 84:1177–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Read RJ, Adams PD, Arendall WB III, Brunger AT, Emsley P, Joosten RP et al (2011) A new generation of crystallographic validation tools for the Protein Data Bank. Structure 19:1395–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dall’Antonia F, Negroni J, Murshudov GN, Schneider TR (2012) Implementation of a B-factor validation protocol for macromolecular structures. Acta Cryst A68:s81

    Google Scholar 

  39. Masmaliyeva RC, Murshudov GN (2019) Analysis and validation of macromolecular B values. Acta Cryst D75:505–518

    Google Scholar 

  40. Carugo O, Djinovic-Carugo K (2013) Half a century of Ramachandran plots. Acta Crystallogr D69:1333–1341

    Google Scholar 

  41. Masmaliyeva RC, Babai KH, Murshudov GN (2020) Local and global analysis of macromolecular atomic displacement parameters. Acta Cryst D76:926–937

    Google Scholar 

  42. Karplus PA, Schulz GE (1985) Preiction of chain flexibility in proteins. Natuwissenschaften 72:212–213

    Article  CAS  Google Scholar 

  43. Vihinen M, Torkkila E, Riikonen P (1994) Accuracy of protein flexibility predictions. Proteins 19:141–149

    Article  CAS  PubMed  Google Scholar 

  44. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ et al (2004) Protein flexibility and intrinsic disorder. Protein Sci 13:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bramer D, Wei G (2018) Blind prediction of protein B-factor and flexibility. J Chem Phys 149:135107. https://doi.org/10.1063/1.5048469

  46. Meersche YV, Cretin G, de Brevern AG, Gelly JC, Galochkina T (2021) MEDUSA: prediction of protein flexibility from sequence. J Mol Biol 433:166882

    Article  CAS  Google Scholar 

  47. Scaramozzino D, Khade PM, Jernigan RL, Lacidogna G, Carpinteri A (2020) Structural compliance: a new metric for protein flexibility. Proteins 88:1482–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reinknecht C, Riga A, Rivera J, Snyder DA (2021) Patterns in protein flexibility: a comparison of NMR “ensembles”, MD trajectories, and crystallographic B-factors. Molecules 26:1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Madsen AØ, Civalleri B, Ferrabone M, Pascale F, Erba A (2013) Anisotropic displacement parameters for molecular crystals from periodic Hartree–Fock and density functional theory calculations. Acta Cryst A69:309–321

    Article  CAS  Google Scholar 

  50. Lee C, Gonze X (1995) Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quartz and stishovite. Phys Rev B51:8610–8613

    Article  Google Scholar 

  51. Malica C, Dal Corso A (2019) Temperature dependent atomic B factor: an ab initio calculation. Acta Cryst A75:624–632

    Google Scholar 

  52. Yang J, Wang Y, Zhang Y (2016) ResQ: an approach to unified estimation of B-factor and residue-specific error in protein structure prediction. J Mol Biol 428:693–701

    Article  CAS  PubMed  Google Scholar 

  53. Yaseen A, Nijim M, Williams B, Qian L, Li M, Wang J et al (2016) FLEXc: protein flexibility prediction using context-based statistics, predicted structural features, and sequence information. BMC Bioinformatics 17:281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Guruge I, Taherzadeh G, Zhan J, Zhou Y, Yang Y (2018) B-factor profile prediction for RNA flexibility using support vector machines. J Comput Chem 39:407–411

    Article  CAS  PubMed  Google Scholar 

  55. Wei H, Wang B, Yang J, Gao J (2021) RNA flexibility prediction with sequence profile and predicted solvent accessibility. IEEE/ACM Trans Comput Biol Bioinform 18(5):2017–2022

    Article  CAS  PubMed  Google Scholar 

  56. Zhang J-h, Lin Y, Sun Y-f, Ye Y-r, Zheng S-p, Han S-y (2012) High-throughput screening of B-factor saturation mutated Rhizomucor miehei lipase thermostability based on synthetic reaction. Enzym Microb Technol 50:325–330

    Article  CAS  Google Scholar 

  57. Reetz MT, Carballeira JD, Vogel A (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed Eng 45:7745–7751

    Article  CAS  Google Scholar 

  58. Kheirollahi A, Khajeh K, Golestani A (2017) Rigidifying flexible sites: an approach to improve stability of chondroitinase ABC I. Int J Biol Macromol 92:270–278

    Article  CAS  Google Scholar 

  59. Zhang XF, Yang GY, Zhang Y, Xie Y, Withers SG, Y. F. (2016) A general and efficient strategy for generating the stable enzymes. Sci Rep 6:33797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ge L, Li D, Wu T, Zhao L, Ding G, Wang Z et al (2018) B-factor-saturation mutagenesis as a strategy to increase the thermostability of α-L-rhamnosidase from Aspergillus terreus. J Biotechnol 275:17–23

    Article  CAS  PubMed  Google Scholar 

  61. Xu L, Han F, Dong Z, Wei Z (2020) Engineering improves enzymatic synthesis of L-tryptophan by tryptophan synthase from Escherichia coli. Microorganisms 8:519

    Article  CAS  PubMed Central  Google Scholar 

  62. He J, Tang F, Chen D, Yu B, Luo Y, Zheng P et al (2019) Design, expression and functional characterization of a thermostable xylanase from Trichoderma reesei. PLoS One 14:e0210548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cruickshank DWJ (1999) Remarks about protein structure precision. Acta Cryst D55:583–593

    CAS  Google Scholar 

  64. Dinesh Kumar KS, Gurusaran M, Satheesh SN, Radha P, Pavithra S, Thulaa Tharshan KPS et al (2015) Online_DPI: a web server to calculate the diffraction precision index for a protein structure. J Appl Crystallogr 48:939–942

    Article  CAS  Google Scholar 

  65. Blow DM (2002) Rearrangement of Cruickshank’s formulae for the diffraction-component precision index. Acta Cryst D58:792–797

    CAS  Google Scholar 

  66. Gurusaran M, Shankar M, Nagarajan R, Helliwell JR, Sekar K (2014) Do we see what we should see? Describing non-covalent interactions in protein structures including precision. IUCrJ 1:74–81

    Article  CAS  PubMed  Google Scholar 

  67. Carugo O (2021) How anisotropic and isotropic atomic displacement parameters monitor protein covalent bonds rigidity: isotropic B-factors underestimate bond rigidity. Amino Acids 53(5):779–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carugo O (2020) Mobility of water and of protein atoms at the protein-water interface, monitored by anisotropic atomic displacement parameters, are largely uncorrelated. Amino Acids 52:435–443

    Article  CAS  PubMed  Google Scholar 

  69. Scheraga HA, Rackovsky S (2019) Sequence-specific dynamic information in proteins. Proteins Struct Funct Bioinform 87:799–804

    Article  CAS  Google Scholar 

  70. Rackovsky S, Scheraga HA (2020) The structure of protein dynamic space. Proc Natl Acad Sci U S A 117:19938–19942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pearce NM, Krojer T, von Delft F (2017) Proper modelling of ligand binding requires an ensemble of bound and unbound states. Acta Cryst D73:256–266

    Google Scholar 

  72. Garman E (2003) “Cool” crystals: macromolecular cryocrystallography and radiation damage. Curr Opin Struct Biol 13:545–551

    Article  CAS  PubMed  Google Scholar 

  73. Gerstel M, Deane CM, Garman EF (2015) Identifying and quantifying radiation damage at the atomic level. J Synchrotron Radiat 22:201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shelley KL, Dixon TPE, Brooks-Bartlett JC, Garman EF (2018) RABDAM: quantifying specific radiation damage in individual protein crystal structures. J Appl Crystallogr 51:552–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chong S, Mir M (2021) Towards decoding the sequence-based grammar governing the functions of intrinsically disordered protein regions. J Mol Biol 433(12):166724

    Article  CAS  PubMed  Google Scholar 

  76. Tompa P (2010) Structure and function of intrinsically disordered proteins. Chapman & Hall, Boca Raton

    Google Scholar 

  77. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764. https://doi.org/10.1016/j.sbi.2008.10.002

  78. Babu MM (2016) The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem Soc Trans 44:1185–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Longhi S, Lieutaud P, Canard B (2010) Conformational disorder. Methods Mol Biol 609:307–325. https://doi.org/10.1007/978-1-60327-241-4_18

  80. Lieutaud P, Ferron F, Longhi S (2016) Predicting conformational disorder. Methods Mol Biol 1415:265–299

    Article  CAS  PubMed  Google Scholar 

  81. Djinovic Carugo K, Carugo O (2015) Missing strings of residues in protein crystal structures. Intrinsically Disord Proteins 3:1–7

    Google Scholar 

  82. Basu S, Bahadur RP (2020) Do sequence neighbours of intrinsically disordered regions promote structural flexibility in intrinsically disordered proteins? J Struct Biol 209:107428

    Article  CAS  PubMed  Google Scholar 

  83. Fukuchi S, Sakamoto S, Nobe Y, Murakami SD, Amemiya T, Hosoda K et al (2012) IDEAL: intrinsically disordered proteins with extensive annotations and literature. Nucleic Acids Res 40:D507–D511

    Article  CAS  PubMed  Google Scholar 

  84. Sulimov VB, Kutov DC, Sulimov AV (2019) Advances in docking. Curr Med Chem 26:7555–7580

    Article  CAS  PubMed  Google Scholar 

  85. Bitencourt-Ferreira G, Filgueira de Azevedo Junior W (2021) Electrostatic potential energy in protein-drug complexes. Curr Med Chem 28(24):4954–4971

    Article  CAS  PubMed  Google Scholar 

  86. Carugo O (2018) How large B-factors can be in protein crystal structures. BMC Bioinformatics 19:61. https://doi.org/10.1186/s12859-018-2083-8

  87. Carugo O (2019) Maximal B-factors in protein crystal structures. Zeit Krist 234:73–77

    CAS  Google Scholar 

  88. Goguet M, Narwani TJ, Petermann R, Jallu V, de Brevern AG (2017) In silico analysis of Glanzmann variants of Calf-1 domain of αIIbβ3 integrin revealed dynamic allosteric effect. Sci Rep 7:8001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Prof. J. P. Rameau is gratefully acknowledged for constant support and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliviero Carugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carugo, O. (2022). Uses and Abuses of the Atomic Displacement Parameters in Structural Biology. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 2449. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2095-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2095-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2094-6

  • Online ISBN: 978-1-0716-2095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics