Skip to main content

Analysis of Single-Cell/Nucleus Transcriptome Data in Adipose Tissue

  • Protocol
  • First Online:
Brown Adipose Tissue

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2448))

Abstract

Adipose tissue is highly heterogeneous and plastic. Recent advances in single-cell/nucleus RNA sequencing technology have helped to study the cellular composition and dynamics of adipose tissue. In this protocol, I outline a typical workflow of analyzing single-cell/nucleus transcriptome data. Specifically, I show an example of how cellular populations are estimated and characterized from a single-nucleus RNAseq data set of frozen archived human adipose tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sun W, von Meyenn F, Peleg-Raibstein D, Wolfrum C (2019) Environmental and nutritional effects regulating adipose tissue function and metabolism across generations. Adv Sci 6:1900275

    Article  Google Scholar 

  3. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

  5. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes (*). J Biol Chem 270:26746–26749

    Article  CAS  PubMed  Google Scholar 

  6. Steppan CM et al (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    Article  CAS  PubMed  Google Scholar 

  7. Scheele C, Wolfrum C (2020) Brown adipose crosstalk in tissue plasticity and human metabolism. Endocr Rev 41:53–65

    Article  PubMed  Google Scholar 

  8. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  CAS  PubMed  Google Scholar 

  9. Jung SM, Sanchez-Gurmaches J, Guertin DA (2019) Brown adipose tissue development and metabolism. In: Pfeifer A, Klingenspor M, Herzig S (eds.) Brown adipose tissue. Springer International Publishing, pp 3–36. https://doi.org/10.1007/164_2018_168

  10. Sun W et al (2018) Cold-induced epigenetic programming of the sperm enhances brown adipose tissue activity in the offspring. Nat Med 24:1372–1383

    Article  CAS  PubMed  Google Scholar 

  11. Sun W et al (2020) snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587:98–102

    Article  CAS  PubMed  Google Scholar 

  12. Burl RB et al (2018) Deconstructing Adipogenesis induced by β3-adrenergic receptor activation with single-cell expression profiling. Cell Metab 28:300–309.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schwalie PC et al (2018) A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559:103–108

    Article  CAS  PubMed  Google Scholar 

  14. Merrick D et al (2019) Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364:eaav2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vijay J et al (2020) Single-cell analysis of human adipose tissue identifies depot- and disease-specific cell types. Nat Metab 2:97–109

    Article  PubMed  Google Scholar 

  16. Crewe C et al (2018) An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell 175:695–708.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fischer AW et al (2021) Lysosomal lipoprotein processing in endothelial cells stimulates adipose tissue thermogenic adaptation. Cell Metab 33:547–564.e7

    Article  CAS  PubMed  Google Scholar 

  18. Wirsén C (1964) Adrenergic innervation of adipose tissue examined by fluorescence microscopy. Nature 202:913–913

    Article  PubMed  Google Scholar 

  19. Feuerer M et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15:930–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hill DA et al (2018) Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc Natl Acad Sci U S A 115:E5096–E5105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rajbhandari P et al (2019) Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes. Elife 8:e49501

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shinoda K et al (2015) Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med 21:389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xue R et al (2015) Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat Med 21:760–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Angueira AR et al (2021) Defining the lineage of thermogenic perivascular adipose tissue. Nat Metab 3:469–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Watcham S, Kucinski I, Gottgens B (2019) New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing. Blood 133:1415–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA (2017) Single-cell transcriptomics to explore the immune system in health and disease. Science 358:58–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Slyper M et al (2020) A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat Med 26:792–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Drokhlyansky E et al (2020) The human and mouse enteric nervous system at single-cell resolution. Cell 182:1606–1622.e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fleming SJ, Marioni JC, Babadi M (2019) CellBender remove-background: a deep generative model for unsupervised removal of background noise from scRNA-seq datasets. bioRxiv 791699. https://doi.org/10.1101/791699

  30. Griffiths JA, Richard AC, Bach K, Lun ATL, Marioni JC (2018) Detection and removal of barcode swapping in single-cell RNA-seq data. Nat Commun 9:2667

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hao Y et al (2020)Integrated analysis of multimodal single-cell data. bioRxiv 2020.10.12.335331 https://doi.org/10.1101/2020.10.12.335331

  32. Aran D et al (2019) Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20:163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolock SL, Lopez R, Klein AM (2019) Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst 8:281–291.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Browse < ArrayExpress < EMBL-EBI. https://www.ebi.ac.uk/arrayexpress/browse.html

  35. Single-Library Analysis with Cell Ranger -Software -Single Cell Gene Expression -Official 10x Genomics Support. https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/using/count

  36. Lun ATL et al (2019) EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol 20:63

    Article  PubMed  PubMed Central  Google Scholar 

  37. Young MD, Behjati S (2020) SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9:giaa151

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ilicic T et al (2016) Classification of low quality cells from single-cell RNA-seq data. Genome Biol 17:29

    Article  PubMed  PubMed Central  Google Scholar 

  39. Klein AM et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Macosko EZ et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao J et al (2017) Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McGinnis CS, Murrow LM, Gartner ZJ (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8:329–337.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lun A, Griffiths J, McCarthy D (2021) DropletUtils: utilities for handling single-cell droplet data. (Bioconductor version: Release (3.13)). https://doi.org/10.18129/B9.bioc.DropletUtils

  44. Price AL et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Christian Wolfrum and Ian Theo Mitchell for editing the manuscript. This work was supported by the Swiss National Science Foundation (P2EZP3 191874).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sun, W. (2022). Analysis of Single-Cell/Nucleus Transcriptome Data in Adipose Tissue. In: Guertin, D.A., Wolfrum, C. (eds) Brown Adipose Tissue. Methods in Molecular Biology, vol 2448. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2087-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2087-8_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2086-1

  • Online ISBN: 978-1-0716-2087-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics