Skip to main content

Signaling Lipidomic Analysis of Thermogenic Adipocytes

  • Protocol
  • First Online:
Brown Adipose Tissue

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2448))

Abstract

Brown adipose tissue is a thermogenic organ that possesses anti-diabetic and anti-obesogenic potential. There has recently been growing interest on the secretory role of brown adipose tissue in regulating whole-body metabolism. Several signaling lipids, including 12-HEPE and 12,13-diHOME, have been shown to be secreted by brown adipose tissue and have demonstrated roles in regulating whole-body energy metabolism. Lipidomics platforms that broadly characterize the signaling lipidome can deconvolute the underlying biology of the lipid metabolites having a broad systemic impact on physiology. Herein, we describe how to perform and analyze LC-MS/MS signaling lipidomics on mature brown adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen KY, Brychta RJ, Abdul Sater Z, Cassimatis TM, Cero C, Fletcher LA, Israni NS, Johnson JW, Lea HJ, Linderman JD, O’Mara AE, Zhu KY, Cypess AM (2020) Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity. J Biol Chem 295(7):1926–1942. https://doi.org/10.1074/jbc.REV119.007363

    Article  CAS  PubMed  Google Scholar 

  2. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517. https://doi.org/10.1056/NEJMoa0810780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360(15):1518–1525. https://doi.org/10.1056/NEJMoa0808949

    Article  CAS  PubMed  Google Scholar 

  4. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508. https://doi.org/10.1056/NEJMoa0808718

    Article  PubMed  Google Scholar 

  5. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293(2):E444–E452. https://doi.org/10.1152/ajpendo.00691.2006

    Article  CAS  PubMed  Google Scholar 

  6. Li L, Li B, Li M, Speakman JR (2019) Switching on the furnace: regulation of heat production in brown adipose tissue. Mol Aspects Med 68:60–73. https://doi.org/10.1016/j.mam.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  7. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359. https://doi.org/10.1152/physrev.00015.2003

    Article  CAS  PubMed  Google Scholar 

  8. Steensels S, Ersoy BA (2019) Fatty acid activation in thermogenic adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 1864(1):79–90. https://doi.org/10.1016/j.bbalip.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  9. Villarroya J, Cereijo R, Gavalda-Navarro A, Peyrou M, Giralt M, Villarroya F (2019) New insights into the secretory functions of brown adipose tissue. J Endocrinol 243(2):R19–R27. https://doi.org/10.1530/JOE-19-0295

    Article  CAS  PubMed  Google Scholar 

  10. Scheele C, Wolfrum C (2020) Brown adipose crosstalk in tissue plasticity and human metabolism. Endocr Rev 41(1):53–65. https://doi.org/10.1210/endrev/bnz007

    Article  PubMed  Google Scholar 

  11. Park H, He A, Lodhi IJ (2019) Lipid regulators of thermogenic fat activation. Trends Endocrinol Metab 30(10):710–723. https://doi.org/10.1016/j.tem.2019.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lynes MD, Kodani SD, Tseng YH (2019) Lipokines and thermogenesis. Endocrinology 160(10):2314–2325. https://doi.org/10.1210/en.2019-00337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, Berriel Diaz M, Rozman J, Hrabe de Angelis M, Nusing RM, Meyer CW, Wahli W, Klingenspor M, Herzig S (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328(5982):1158–1161. https://doi.org/10.1126/science.1186034

    Article  CAS  PubMed  Google Scholar 

  14. Shamsi F, Xue R, Huang TL, Lundh M, Liu Y, Leiria LO, Lynes MD, Kempf E, Wang CH, Sugimoto S, Nigro P, Landgraf K, Schulz T, Li Y, Emanuelli B, Kothakota S, Williams LT, Jessen N, Pedersen SB, Bottcher Y, Bluher M, Korner A, Goodyear LJ, Mohammadi M, Kahn CR, Tseng YH (2020) FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nat Commun 11(1):1421. https://doi.org/10.1038/s41467-020-15055-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leiria LO, Wang CH, Lynes MD, Yang K, Shamsi F, Sato M, Sugimoto S, Chen EY, Bussberg V, Narain NR, Sansbury BE, Darcy J, Huang TL, Kodani SD, Sakaguchi M, Rocha AL, Schulz TJ, Bartelt A, Hotamisligil GS, Hirshman MF, van Leyen K, Goodyear LJ, Bluher M, Cypess AM, Kiebish MA, Spite M, Tseng YH (2019) 12-lipoxygenase regulates cold adaptation and glucose metabolism by producing the Omega-3 lipid 12-HEPE from brown fat. Cell Metab 30(4):768–783.e767. https://doi.org/10.1016/j.cmet.2019.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lynes MD, Leiria LO, Lundh M, Bartelt A, Shamsi F, Huang TL, Takahashi H, Hirshman MF, Schlein C, Lee A, Baer LA, May FJ, Gao F, Narain NR, Chen EY, Kiebish MA, Cypess AM, Bluher M, Goodyear LJ, Hotamisligil GS, Stanford KI, Tseng YH (2017) The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med 23(5):631–637. https://doi.org/10.1038/nm.4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lahesmaa M, Eriksson O, Gnad T, Oikonen V, Bucci M, Hirvonen J, Koskensalo K, Teuho J, Niemi T, Taittonen M, Lahdenpohja S, Din MU, Haaparanta-Solin M, Pfeifer A, Virtanen KA, Nuutila P (2018) Cannabinoid type 1 receptors are upregulated during acute activation of brown adipose tissue. Diabetes 67(7):1226–1236. https://doi.org/10.2337/db17-1366

    Article  PubMed  Google Scholar 

  18. Chaurasia B, Kaddai VA, Lancaster GI, Henstridge DC, Sriram S, Galam DL, Gopalan V, Prakash KN, Velan SS, Bulchand S, Tsong TJ, Wang M, Siddique MM, Yuguang G, Sigmundsson K, Mellet NA, Weir JM, Meikle PJ, Bin MYMS, Shabbir A, Shayman JA, Hirabayashi Y, Shiow ST, Sugii S, Summers SA (2016) Adipocyte ceramides regulate subcutaneous adipose browning, inflammation, and metabolism. Cell Metab 24(6):820–834. https://doi.org/10.1016/j.cmet.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  19. Serhan CN, Gupta SK, Perretti M, Godson C, Brennan E, Li Y, Soehnlein O, Shimizu T, Werz O, Chiurchiù V, Azzi A, Dubourdeau M, Gupta SS, Schopohl P, Hoch M, Gjorgevikj D, Khan FM, Brauer D, Tripathi A, Cesnulevicius K, Lescheid D, Schultz M, Särndahl E, Repsilber D, Kruse R, Sala A, Haeggström JZ, Levy BD, Filep JG, Wolkenhauer O (2020) The atlas of inflammation resolution (AIR). Mol Aspects Med 74:100894. https://doi.org/10.1016/j.mam.2020.100894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fahy E, Sud M, Cotter D, Subramaniam S (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35(Web Server issue):W606–W612. https://doi.org/10.1093/nar/gkm324

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aimo L, Liechti R, Hyka-Nouspikel N, Niknejad A, Gleizes A, Götz L, Kuznetsov D, David FP, van der Goot FG, Riezman H, Bougueleret L, Xenarios I, Bridge A (2015) The SwissLipids knowledgebase for lipid biology. Bioinformatics 31(17):2860–2866. https://doi.org/10.1093/bioinformatics/btv285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Acevedo A, Durán C, Ciucci S, Gerl M, Cannistraci CV (2018) LIPEA: lipid pathway enrichment analysis. bioRxiv. https://doi.org/10.1101/274969

  23. Chong J, Wishart DS, Xia J (2019) Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics 68(1):e86. https://doi.org/10.1002/cpbi.86

    Article  PubMed  Google Scholar 

  24. Mohamed A, Molendijk J, Hill MM (2020) Lipidr: a software tool for data mining and analysis of lipidomics datasets. J Proteome Res 19(7):2890–2897. https://doi.org/10.1021/acs.jproteome.0c00082

    Article  CAS  PubMed  Google Scholar 

  25. Mock A, Warta R, Dettling S, Brors B, Jager D, Herold-Mende C (2018) MetaboDiff: an R package for differential metabolomic analysis. Bioinformatics 34(19):3417–3418. https://doi.org/10.1093/bioinformatics/bty344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riederer M, Lechleitner M, Kofeler H, Frank S (2017) Reduced expression of adipose triglyceride lipase decreases arachidonic acid release and prostacyclin secretion in human aortic endothelial cells. Arch Physiol Biochem 123(4):249–253. https://doi.org/10.1080/13813455.2017.1309052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xue R, Lynes MD, Dreyfuss JM, Shamsi F, Schulz TJ, Zhang H, Huang TL, Townsend KL, Li Y, Takahashi H, Weiner LS, White AP, Lynes MS, Rubin LL, Goodyear LJ, Cypess AM, Tseng YH (2015) Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat Med 21(7):760–768. https://doi.org/10.1038/nm.3881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, van Ommen B, Smilde AK (2006) Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem 78(2):567–574. https://doi.org/10.1021/ac051495j

    Article  CAS  PubMed  Google Scholar 

  29. Armitage EG, Godzien J, Alonso-Herranz V, Lopez-Gonzalvez A, Barbas C (2015) Missing value imputation strategies for metabolomics data. Electrophoresis 36(24):3050–3060. https://doi.org/10.1002/elps.201500352

    Article  CAS  PubMed  Google Scholar 

  30. Wei R, Wang J, Su M, Jia E, Chen S, Chen T, Ni Y (2018) Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep 8(1):663. https://doi.org/10.1038/s41598-017-19120-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kokla M, Virtanen J, Kolehmainen M, Paananen J, Hanhineva K (2019) Random forest-based imputation outperforms other methods for imputing LC-MS metabolomics data: a comparative study. BMC Bioinform 20(1):492. https://doi.org/10.1186/s12859-019-3110-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NIH) grants R01DK077097, R01DK102898, R01DK122808 (to Y.-H.T.), P30DK036836 (to Joslin Diabetes Center’s Diabetes Research Center) and by the US Army Medical Research Grant W81XWH-17-1-0428. S.D.K. was supported by NIH Training grant T32 DK007260.

Declaration of Interests

The following authors declare competing interests: M.A.K. N.R.N and V.B. are employees of BERG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael A. Kiebish or Yu-Hua Tseng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kodani, S.D., Bussberg, V., Narain, N.R., Kiebish, M.A., Tseng, YH. (2022). Signaling Lipidomic Analysis of Thermogenic Adipocytes. In: Guertin, D.A., Wolfrum, C. (eds) Brown Adipose Tissue. Methods in Molecular Biology, vol 2448. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2087-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2087-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2086-1

  • Online ISBN: 978-1-0716-2087-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics