Skip to main content

Setting Ambient Temperature Conditions to Optimize Translation of Molecular Work from the Mouse to Human: The “Goldilocks Solution”

  • Protocol
  • First Online:
Brown Adipose Tissue

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2448))

Abstract

Temperature has a profound effect on many aspects of murine physiology. This raises the question of the best temperature at which mice should be housed to maximize the translational potential to humans. The temperatures at which mice have been routinely kept for studies of molecular physiology (20–21 °C) maximize the comfort of animal handling staff. There is a widespread movement suggesting we should perform experiments instead on mice housed at 30 °C. This often produces very different outcomes. Here we analyze the basis of this suggestion and show that while 20–21 °C is too cold, 30 °C is probably too hot. Rather we suggest an intermediate temperature “the Goldilocks solution” of 25–26 °C is probably optimal. This should be combined with providing animals with nesting material so that they can construct nests to generate microclimates that are within their own control. Providing copious nesting material has additional spin-off advantages in terms of increasing environmental enrichment. Ultimately, however, advocating a single temperature to mimic human physiology is plagued by the problem that humans vary widely in the temperature environments they experience, with consequences for human disease. Hence studying responses at a range of temperatures may provide the greatest insights and translational potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maloney SK, Fuller A, Mitchell D et al (2014) Translating animal model research: does it matter that our rodents are cold? Physiology (Bethesda) 29:413–420

    CAS  PubMed  Google Scholar 

  2. UK Home Office (2004) Mice, rats, gerbils, hamsters and guinea pigs. In: Code of practice for the housing and care of animals bred, supplied or used for scientific purposes. Her Majesty’s Stationery Office, London

    Google Scholar 

  3. UK Home Office (1989) Code of practice for the housing of animals used in scientific procedures. Her Majesty’s Stationery Office, London

    Google Scholar 

  4. Havenaar R, Meijer JC, Morton DB et al (2001) Biology and husbandry of laboratory animals. In: Van Zutphen LFM (ed) Principles of laboratory animal science, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  5. US National Academies (2011) National Research Council Committee for the update of the guide for the use of laboratory animals. The National Academies Collection: reports funded by National Institutes of Health. Guide for the care and use of laboratory animals. National Academies Press, Washington

    Google Scholar 

  6. Rothwell NJ, Stock MJ (1979) A role for brown adipose tissue in diet-induced thermogenesis. Nature 281:31–35

    CAS  PubMed  Google Scholar 

  7. Enerbäck S, Jacobsson A, Simpson EM et al (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94

    PubMed  Google Scholar 

  8. Liu X, Rossmeisl M, McClaine J et al (2003) Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J Clin Invest 111:399–407

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Feldmann HM, Golozoubova V, Cannon B et al (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209

    CAS  PubMed  Google Scholar 

  10. Overton JM (2010) Phenotyping small animals as models for the human metabolic syndrome: thermoneutrality matters. Int J Obes 34:S53–S58

    Google Scholar 

  11. Ganeshan K, Chawla A (2017) Warming the mouse to model human diseases. Nat Rev Endocrinol 13:458–465

    PubMed  PubMed Central  Google Scholar 

  12. Fischer AW, Cannon B, Nedergaard J (2017) Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol Metab 7:161–170

    PubMed  PubMed Central  Google Scholar 

  13. Gordon CJ, Johnstone AF, Aydin C (2014) Thermal stress and toxicity. Compr Physiol 4:995–1016

    PubMed  Google Scholar 

  14. Gordon CJ (2005) Temperature and toxicology: an integrative, comparative, and environmental approach. CRC Press, Boca Raton

    Google Scholar 

  15. Gordon CJ (2017) The mouse thermoregulatory system: its impact on translating biomedical data to humans. Physiol Behav 179:55–66

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Speakman JR, Keijer J (2013) Not so hot: optimal housing temperatures for mice to mimic the thermal environment of humans. Mol Metab 2:5–9

    CAS  Google Scholar 

  17. Scholander PF, Hock R, Walters V et al (1950) Heat regulation in some arctic and tropical mammals and birds. Biol Bull 99:237–258

    CAS  PubMed  Google Scholar 

  18. Speakman JR (2013) Measuring energy metabolism in the mouse – theoretical, practical, and analytical considerations. Front Physiol 4:34

    PubMed  PubMed Central  Google Scholar 

  19. Aschoff J (1981) Thermal conductance in mammals and birds: its dependence on body size and crcadian phase. Comp Biochem Physiol A Mol Integr Physiol 69:611–619

    Google Scholar 

  20. Keijer J, Li M, Speakman JR (2019) What is the best housing temperature to translate mouse experiments to humans? Mol Metab 25:168–176

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Westerterp KR, Speakman JR (2008) Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int J Obes 32:1256–1263

    CAS  Google Scholar 

  22. Speakman JR, Westerterp KR (2010) Associations between energy demands, physical activity, and body composition in adult humans between 18 and 96 y of age. Am J Clin Nutr 92:826–834

    CAS  PubMed  Google Scholar 

  23. Thurber C, Dugas LR, Ocobock C et al (2019) Extreme events reveal an alimentary limit on sustained maximal human energy expenditure. Sci Adv 5:eaaw0341

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Speakman JR, Król E (2010) Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J Anim Ecol 79:726–746

    PubMed  Google Scholar 

  25. Lodhi IJ, Semenkovich CF (2009) Why we should put clothes on mice. Cell Metab 9:111–112

    CAS  PubMed  Google Scholar 

  26. Gaskill BN, Gordon CJ, Pajor EA et al (2012) Heat or insulation: behavioral titration of mouse preference for warmth or access to a nest. PLoS One 7:e32799

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Karp CL (2012) Unstressing intemperate models: how cold stress undermines mouse modeling. J Exp Med 209:1069–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fischer AW, Cannon B, Nedergaard J (2019) The answer to the question "what is the best housing temperature to translate mouse experiments to humans?" is: thermoneutrality. Mol Metab 26:1–3

    CAS  PubMed  PubMed Central  Google Scholar 

  29. de Jong JMA, Sun W, Pires ND et al (2019) Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nat Metab 1:830–843

    PubMed  Google Scholar 

  30. Gordon CJ (1985) Relationship between autonomic and behavioral thermoregulation in the mouse. Physiol Behav 34:687–690

    CAS  PubMed  Google Scholar 

  31. Gaskill BN, Rohr SA, Pajor EA et al (2009) Some like it hot: mouse temperature preferences in laboratory housing. Appl Anim Behav Sci 116:279–285

    Google Scholar 

  32. Brychta RJ, Huang S, Wang J et al (2019) Quantification of the capacity for cold-induced thermogenesis in Young men with and without obesity. J Clin Endocrinol Metab 104:4865–4878

    PubMed  PubMed Central  Google Scholar 

  33. Johnson F, Mavrogianni A, Ucci M et al (2011) Could increased time spent in a thermal comfort zone contribute to population increases in obesity? Obes Rev 12:543–551

    CAS  PubMed  Google Scholar 

  34. Kingma BR, Frijns AJ, Schellen L et al (2014) Beyond the classic thermoneutral zone: including thermal comfort. Temperature (Austin, Tex) 1:142–149

    PubMed  PubMed Central  Google Scholar 

  35. Speakman JR (1997) Doubly labelled water—Therory and practice. Springer, US

    Google Scholar 

  36. Hill RW, Muhich TE, Humphries MM (2013) City-scale expansion of human thermoregulatory costs. PLoS One 8:e76238

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee P, Smith S, Linderman J et al (2014) Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63:3686–3698

    CAS  PubMed  PubMed Central  Google Scholar 

  38. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    PubMed  Google Scholar 

  39. Saito M, Okamatsu-Ogura Y, Matsushita M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoneshiro T, Aita S, Matsushita M et al (2013) Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 123:3404–3408

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Au Yong ITH, Thorn N, Ganatra R et al (2009) Brown adipose tissue and seasonal variation in humans. Diabetes 58:2583–2587

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gordon CJ (1993) Temperature regulation in laboratory rodents. Cambridge University Press, Cambridge

    Google Scholar 

  43. Gordon CJ (2012) The mouse: an “average” homeotherm. J Therm Biol 37:286–290

    Google Scholar 

  44. Abreu-Vieira G, Xiao C, Gavrilova O et al (2015) Integration of body temperature into the analysis of energy expenditure in the mouse. Mol Metab 4:461–470

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Škop V, Guo J, Liu N et al (2020) Mouse thermoregulation: introducing the concept of the thermoneutral point. Cell Rep 31:107501

    PubMed  PubMed Central  Google Scholar 

  46. Speakman JR (2018) Chapter 26—obesity and thermoregulation, in handbook of clinical neurology. Elsevier

    Google Scholar 

  47. Fischer AW, Csikasz RI, Gv E et al (2016) No insulating effect of obesity. Am J Physiol Endocrinol Metab 311:E202–E213

    PubMed  Google Scholar 

  48. Högberg H, Engblom L, Ekdahl A et al (2006) Temperature dependence of O2 consumption; opposite effects of leptin and etomoxir on respiratory quotient in mice. Obesity (Silver Spring) 14:673–682

    PubMed  Google Scholar 

  49. Gordon CJ (2004) Effect of cage bedding on temperature regulation and metabolism of group-housed female mice. Comp Med 54(1):63–68

    CAS  PubMed  Google Scholar 

  50. Gordon CJ, Becker P, Ali JS (1998) Behavioral thermoregulatory responses of single- and group-housed mice. Physiol Behav 65:255–262

    CAS  PubMed  Google Scholar 

  51. Jordan D (1993) Temperature regulation in laboratory rodents. J Anat 186:228–228

    Google Scholar 

  52. Seeley RJ, MacDougald OA (2021) Mice as experimental models for human physiology: when several degrees in housing temperature matter. Nat Metab 3:443–445

    PubMed  PubMed Central  Google Scholar 

  53. Refinetti R (2010) The circadian rhythm of body temperature. Front Biosci 15:564–594

    Google Scholar 

  54. Gaskill BN, Garner JP (2014) Letter-to-the-editor on “Not so hot: optimal housing temperatures for mice to mimic the thermal environment of humans”. Mol Metab 3:335–336

    CAS  PubMed  Google Scholar 

  55. Fischer AW, Hoefig CS, Abreu-Vieira G et al (2016) Leptin raises defended body temperature without activating thermogenesis. Cell Rep 14:1621–1631

    CAS  PubMed  Google Scholar 

  56. Gaskill BN, Rohr SA, Pajor EA et al (2011) Working with what you’ve got: changes in thermal preference and behavior in mice with or without nesting material. J Therm Biol 36:193–199

    Google Scholar 

  57. Hosek B, Chlumecky J, Misustova J (1965) A comparison of energy exchange and thermal insulation in hairless and normal mice. Subject Strain Bibliography 14:476–480

    CAS  Google Scholar 

  58. Mount LE (1971) Metabolic rate and thermal insulation in albino and hairless mice. J Physiol 217:315–326

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Darcy J, McFadden S, Fang Y et al (2016) Brown adipose tissue function is enhanced in long-lived, male Ames dwarf mice. Endocrinology 157:4744–4753

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Speakman JR, Heidari-Bakavoli S (2016) Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature. Sci Rep 6:30409

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ravussin Y, Xiao C, Gavrilova O et al (2014) Effect of intermittent cold exposure on brown fat activation, obesity, and energy homeostasis in mice. PLoS One 9:e85876

    PubMed  PubMed Central  Google Scholar 

  62. Chevalier C, Stojanović O, Colin DJ et al (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163:1360–1374

    CAS  PubMed  Google Scholar 

  63. Wang TY, Liu C, Wang A et al (2015) Intermittent cold exposure improves glucose homeostasis associated with brown and white adipose tissues in mice. Life Sci 139:153–159

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vallerand AL, Lupien J, Bukowiecki LJ (1986) Cold exposure reverses the diabetogenic effects of high-fat feeding. Diabetes 35:329–334

    CAS  PubMed  Google Scholar 

  65. Hanssen MJ, Hoeks J, Brans B et al (2015) Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 21:863–865

    CAS  PubMed  Google Scholar 

  66. Blondin DP, Labbé SM, Tingelstad HC et al (2014) Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab 99:E438–E446

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Haman F, Péronnet F, Kenny GP et al (2002) Effect of cold exposure on fuel utilization in humans: plasma glucose, muscle glycogen, and lipids. J Appl Physiol 93:77–84

    CAS  PubMed  Google Scholar 

  68. Mazidi M, Speakman JR (2020) Predicted impact of increasing average ambient temperature over the coming century on mortality from cardiovascular disease and stroke in the USA. Atherosclerosis 313:1–7

    CAS  PubMed  Google Scholar 

  69. Reitman ML (2018) Of mice and men - environmental temperature, body temperature, and treatment of obesity. FEBS Lett 592:2098–2107

    CAS  PubMed  Google Scholar 

  70. Contreras LC (1984) Bioenergetics of huddling: test of a psycho-physiological hypothesis. J Mammal 65:256–262

    Google Scholar 

  71. Hayes JP, Speakman JR, Racey PA (1992) The contributions of local heating and reducing exposed surface area to the energetic benefits of huddling by short-tailed field voles (Microtus agrestis). Physiol Zool 65:742–762

    Google Scholar 

  72. Groó Z, Szenczi P, Bánszegi O et al (2018) The influence of familiarity and temperature on the huddling behavior of two mouse species with contrasting social systems. Behav Process 151:67–72

    Google Scholar 

  73. Toth LA, Trammell RA, Ilsley-Woods M (2015) Interactions between housing density and ambient temperature in the cage environment: effects on mouse physiology and behavior. JAALAS 54:708–717

    PubMed  PubMed Central  Google Scholar 

  74. Greenberg G (1972) The effects of ambient temperature and population density on aggression in two inbred strains of mice, Mus musculus. Behaviour 42:119–130

    CAS  PubMed  Google Scholar 

  75. Latham N, Mason G (2004) From house mouse to mouse house: the behavioural biology of free-living Mus musculus and its implications in the laboratory. Appl Anim Behav Sci 86:261–289

    Google Scholar 

  76. Speakman JR, Król E (2005) Limits to sustained energy intake IX: a review of hypotheses. J Comp Physiol B 175:375–394

    PubMed  Google Scholar 

  77. Speakman JR, Król E (2011) Limits to sustained energy intake. XIII. Recent progress and future perspectives. J Exp Biol 214:230–241

    PubMed  Google Scholar 

  78. Zhao ZJ, Derous D, Gerrard A et al (2020) Limits to sustained energy intake. XXX. Constraint or restraint? Manipulations of food supply show peak food intake in lactation is constrained. J Exp Biol 223(Pt 8):jeb208314

    PubMed  Google Scholar 

  79. Król E, Murphy M, Speakman JR (2007) Limits to sustained energy intake. X. Effects of fur removal on reproductive performance in laboratory mice. J Exp Biol 210:4233–4243

    PubMed  Google Scholar 

  80. Król E, Speakman JR (2003) Limits to sustained energy intake VI. Energetics of lactation in laboratory mice at thermoneutrality. J Exp Biol 206:4255–4266

    PubMed  Google Scholar 

  81. Król E, Speakman JR (2003) Limits to sustained energy intake VII. Milk energy output in laboratory mice at thermoneutrality. J Exp Biol 206:4267–4281

    PubMed  Google Scholar 

  82. Zhao ZJ, Hambly C, Shi LL et al (2020) Late lactation in small mammals is a critically sensitive window of vulnerability to elevated ambient temperature. Proc Natl Acad Sci U S A 117:24352–24358

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao ZJ, Li L, Yang DB et al (2016) Limits to sustained energy intake XXV: milk energy output and thermogenesis in Swiss mice lactating at thermoneutrality. Sci Rep 6:31626

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bao MH, Chen LB, Hambly C et al (2020) Exposure to hot temperatures during lactation in Swiss mice stunts offspring growth and decreases future reproductive performance of female offspring. J Exp Biol 223:9

    Google Scholar 

  85. Young JB, Shimano Y (1998) Effects of rearing temperature on body weight and abdominal fat in male and female rats. Am J Phys 274:R398–R405

    CAS  Google Scholar 

  86. Helppi J, Schreier D, Naumann R et al (2016) Mouse reproductive fitness is maintained up to an ambient temperature of 28°C when housed in individually-ventilated cages. Lab Anim 50:254–263

    CAS  PubMed  Google Scholar 

  87. Johnson MS, Speakman JR (2001) Limits to sustained energy intake. V. Effect of cold-exposure during lactation in Mus musculus. J Exp Biol 204:1967–1977

    CAS  PubMed  Google Scholar 

  88. Wen J, Tan S, Qiao QG et al (2017) Sustained energy intake in lactating Swiss mice: a dual modulation process. J Exp Biol 220:2277–2286

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Speakman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, M., Speakman, J.R. (2022). Setting Ambient Temperature Conditions to Optimize Translation of Molecular Work from the Mouse to Human: The “Goldilocks Solution”. In: Guertin, D.A., Wolfrum, C. (eds) Brown Adipose Tissue. Methods in Molecular Biology, vol 2448. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2087-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2087-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2086-1

  • Online ISBN: 978-1-0716-2087-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics