Skip to main content

Cysteine Reactivity Profiling to Unveil Redox Regulation in Phytopathogens

  • Protocol
  • First Online:
Plant Proteases and Plant Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2447))

Abstract

Reactivity-based chemical proteomics is a powerful technology based on the use of tagged chemicals that covalently react with surface-exposed residues on proteins in native proteomes. Reactivity profiling involves the purification, identification, and quantification of labeled peptides by LC-MS/MS. Here, we have detailed a protocol for reactivity profiling of Cys residues using iodoacetamide probes, displaying >1000 reactive Cys residues in the proteome of phytopathogen Pseudomonas syringae pv. tomato DC3000 (PtoDC3000). Comparative reactivity profiling of PtoDC3000 treated with or without hydrogen peroxide (H2O2) identified ~200 H2O2-sensitive Cys residues in antioxidant enzymes, metabolic enzymes, and transcription regulators. Interestingly, half of these H2O2-sensitive Cys residues are more reactive in response to H2O2 and several proteins have multiple Cys residues with opposite reactivities in response to H2O2 exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dennehy MK, Richards KA, Wernke GR, Shyr Y, Liebler DC (2006) Cytosolic and nuclear protein targets of thiol-reactive electrophiles. Chem Res Toxicol 19:20–29

    Article  CAS  Google Scholar 

  2. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790–795

    Article  CAS  Google Scholar 

  3. Deng X, Weerapana E, Ulanovskaya O, Sun F, Liang H, Ji Q, Ye Y, Fu Y, Zhou L, Li J, Zhang H, Wang C, Alvarez S, Hicks LM, Lan L, Wu M, Cravatt BF, He C (2013) Proteome wide quantification and characterization of oxidation- sensitive cysteines in pathogenic bacteria. Cell Host Microbe 13:358–370

    Article  CAS  Google Scholar 

  4. Abegg D, Frei R, Cerato L, Prasad Hari D, Wang C, Waser J, Adibekian A (2015) Proteome-wide profiling of targets of cysteine reactive small molecules by using ethynyl benziodoxolone reagents. Angew Chem 54:10852–10857

    Article  CAS  Google Scholar 

  5. Backus KM, Correia BE, Lum KM, Forli S, Horning BD, González-Páez GE, Chatterjee S, Lanning BR, Teijaro JR, Olson AJ, Wolan DW, Cravatt BF (2016) Proteome-wide covalent ligand discovery in native biological systems. Nature 534:570–574

    Article  CAS  Google Scholar 

  6. Maurais AJ, Weerapana E (2019) Reactive-cysteine profiling for drug discovery. Curr Opin Chem Biol 50:29–36

    Article  CAS  Google Scholar 

  7. Abo M, Li C, Weerapana E (2017) Isotopically-labeled iodoacetamide-alkyne probes for quantitative cysteine-reactivity profiling. Mol Pharm 15:743–749

    Article  Google Scholar 

  8. Tian C, Sun R, Liu K, Fu L, Liu X, Zhou W, Yang Y, Yang J (2017) Multiplexed thiol reactivity profiling for target discovery of electrophilic natural products. Chem Biol 24:1416–1427

    CAS  Google Scholar 

  9. Zanon PRA, Lewald L, Hacker SM (2020) Isotopically labeled desthiobiotin azide (isoDTB) tags enable global profiling of the bacterial cysteinome. Angew Chem Int Ed 59:2829–2836

    Article  CAS  Google Scholar 

  10. Metcalfe C, Cresswell P, Ciaccia L, Thomas B, Barclay AN (2011) Labile disulfide bonds are common at the leucocyte cell surface. Open Biol 1:110010

    Article  Google Scholar 

  11. Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–18

    Google Scholar 

  12. Fones H, Preston GM (2012) Reactive oxygen and oxidative stress tolerance in plant pathogenic pseudomonas. FEMS Microbiol Lett 327:1–8

    Article  CAS  Google Scholar 

  13. Peralta D, Bronowska AK, Morgan B, Dóka É, Van Laer K, Nagy P, Gräter F, Dick TP (2015) A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol 11:156–163

    Article  CAS  Google Scholar 

  14. Tyanova S, Temu T, Carlson A, Sinitcyn P, Mann M, Cox J (2015) Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics 15:1453–1456

    Article  CAS  Google Scholar 

  15. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319

    Article  CAS  Google Scholar 

  16. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740

    Article  CAS  Google Scholar 

  17. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526

    Article  CAS  Google Scholar 

  18. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  Google Scholar 

  19. Stauber JL, Loginicheva E, Schechter LM (2012) Carbon source and cell density-dependent regulation of type III secretion system gene expression in Pseudomonas syringae pathovar tomato DC3000. Res Microbiol 163:531–539

    Article  CAS  Google Scholar 

  20. Hoch DG, Abegg D, Adibekian A (2018) Cysteine-reactive probes and their use in chemical proteomics. Chem comm 54:4501–4512

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the John Fell Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renier A. L. van der Hoorn .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Table S1

Oligonucleotides used for Darwin Assembly and Barcoding Libraries (XLSX 472 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Morimoto, K., Stegmann, M., Kaschani, F., Mohammed, S., van der Hoorn, R.A.L. (2022). Cysteine Reactivity Profiling to Unveil Redox Regulation in Phytopathogens. In: Klemenčič, M., Stael, S., Huesgen, P.F. (eds) Plant Proteases and Plant Cell Death. Methods in Molecular Biology, vol 2447. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2079-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2079-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2078-6

  • Online ISBN: 978-1-0716-2079-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics