Skip to main content

Monitoring Cell Death Via Ion Leakage and PAM Fluorometry

Part of the Methods in Molecular Biology book series (MIMB,volume 2447)

Abstract

Cell death in plants plays a major role during development as well as in response to certain biotic and abiotic stresses. For example, plant cell death can be triggered in a tightly regulated way during the hypersensitive response (HR) in defense against pathogens or be elicited by pathogenic toxin deployment. Monitoring cell death and its impact on plant health can aid in the quantification of plant disease symptoms and help to identify the underlying molecular pathways. Here, we describe our current protocol for monitoring plant cell death via ion leakage and Pulse-Amplitude-Modulation (PAM) fluorometry. We further provide a detailed protocol for the sample preparation, the measurement, and the data evaluation and discuss the complementary nature of ion leakage and PAM fluorometry as well as the potential of PAM fluorometry for high-throughput screenings.

Key words

  • Plant cell death
  • ION leakage
  • Pulse-Amplitude-Modulation (PAM) fluorometry
  • Pathogen treatment
  • Chemical treatment
  • Large-scale screening

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2079-3_14
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2079-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Van Hautegem T, Waters AJ, Goodrich J, Nowack MK (2015) Only in dying, life: programmed cell death during plant development. Trends Plant Sci 20(2):102–113. https://doi.org/10.1016/j.tplants.2014.10.003

    CAS  CrossRef  PubMed  Google Scholar 

  2. Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6(3):201–211. https://doi.org/10.1111/j.1462-5822.2004.00361.x

    CAS  CrossRef  PubMed  Google Scholar 

  3. Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69. https://doi.org/10.3389/fpls.2015.00069

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Antoine Danon VD, Mailhac N, Gallois P (2000) Plant programmed cell death: a common way to die. Plant Physiol Biochem 38(9):647–655. https://doi.org/10.1016/S0981-9428(00)01178-5

    CrossRef  Google Scholar 

  5. Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65(5):1259–1270. https://doi.org/10.1093/jxb/eru004

    CAS  CrossRef  PubMed  Google Scholar 

  6. Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64(13):3983–3998. https://doi.org/10.1093/jxb/ert208

    CAS  CrossRef  PubMed  Google Scholar 

  7. Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132(2):485–493. https://doi.org/10.1104/pp.102.018093

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J (2012) Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell 24(5):1921–1935. https://doi.org/10.1105/tpc.112.097972

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170(4):489–504. https://doi.org/10.1007/BF00402983

    CAS  CrossRef  PubMed  Google Scholar 

  10. Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37(3):455–469. https://doi.org/10.1023/a:1005934428906

    CAS  CrossRef  PubMed  Google Scholar 

  11. Sarkar D, Rovenich H, Jeena G, Nizam S, Tissier A, Balcke GU, Mahdi LK, Bonkowski M, Langen G, Zuccaro A (2019) The inconspicuous gatekeeper: endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere. New Phytol 224(2):886–901. https://doi.org/10.1111/nph.15904

    CAS  CrossRef  PubMed  Google Scholar 

  12. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Pitter Huesgen and Dr. Gregor Langen for editing the draft. We acknowledge the support by the Cluster of Excellence on Plant Sciences (CEPLAS), the Max-Planck-Gesellschaft through the International Max Planck Research School (IMPRS) on “Understanding Complex Plant Traits using Computational and Evolutionary Approaches” and the University of Cologne. The research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC 2048/1–25 Project ID: 390686111 as well as the projects ZU 263/11-1 (SPP DECRyPT) and–SFB-1403–414786233 (SFB cell death and immunity).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alga Zuccaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Dunken, N., Mahdi, L., Häusler, R.E., Zuccaro, A. (2022). Monitoring Cell Death Via Ion Leakage and PAM Fluorometry. In: Klemenčič, M., Stael, S., Huesgen, P.F. (eds) Plant Proteases and Plant Cell Death. Methods in Molecular Biology, vol 2447. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2079-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2079-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2078-6

  • Online ISBN: 978-1-0716-2079-3

  • eBook Packages: Springer Protocols