Buono RA, Hudecek R, Nowack MK (2019) The roles of proteases during developmental programmed cell death in plants. J Exp Bot 70(7):2097–2112
CAS
CrossRef
Google Scholar
van der Hoorn RAL (2008) Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol 59:191–223. https://doi.org/10.1146/annurev.arplant.59.032607.092835
CAS
CrossRef
PubMed
Google Scholar
Salguero-Linares J, Coll NS (2019) Plant proteases in the control of the hypersensitive response. J Exp Bot 70:2087–2095. https://doi.org/10.1093/jxb/erz030
CAS
CrossRef
PubMed
Google Scholar
Chen S, Yim JJ, Bogyo M (2019) Synthetic and biological approaches to map substrate specificities of proteases. Biol Chem 401:165–182. https://doi.org/10.1515/hsz-2019-0332
CAS
CrossRef
PubMed
Google Scholar
Schilling O, Overall CM (2008) Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat Biotechnol 26:685–694. https://doi.org/10.1038/nbt1408
CAS
CrossRef
PubMed
Google Scholar
Schilling O, Huesgen PF, Barré O et al (2011) Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry. Nat Protocol 6:111–120. https://doi.org/10.1038/nprot.2010.178
CAS
CrossRef
Google Scholar
Dahms SO, Demir F, Huesgen PF et al (2019) Sirtilins—the new old members of the vitamin K-dependent coagulation factor family. J Thromb Haemost 17(3):470–481. https://doi.org/10.1111/jth.14384
CrossRef
PubMed
PubMed Central
Google Scholar
Dall E, Zauner FB, Soh WT et al (2020) Structural and functional studies of Arabidopsis thaliana legumain beta reveal isoform specific mechanisms of activation and substrate recognition. J Biol Chem 295:13047–13064. https://doi.org/10.1074/jbc.ra120.014478
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Biniossek ML, Niemer M, Maksimchuk K et al (2016) Identification of protease specificity by combining proteome-derived peptide libraries and quantitative proteomics. Mol Cell Proteomics 15:2515–2524. https://doi.org/10.1074/mcp.O115.056671
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Chen C, Mayer B, Schilling O (2017) Profiling of protease cleavage sites by proteome-derived peptide libraries and quantitative proteomics. In: Schilling O (ed) Protein terminal profiling. Springer, New York, pp 197–204
CrossRef
Google Scholar
Marino G, Huesgen PF, Eckhard U et al (2014) Family-wide characterization of matrix metalloproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity. Biochem J 457(2):335–346
CAS
CrossRef
Google Scholar
Soares A, Niedermaier S, Faro R et al (2019) An atypical aspartic protease modulates lateral root development in Arabidopsis thaliana. J Exp Bot 70:2157–2171. https://doi.org/10.1093/jxb/erz059
CAS
CrossRef
PubMed
Google Scholar
Porodko A, Cirnski A, Petrov D et al (2018) The two cathepsin B-like proteases of Arabidopsis thaliana are closely related enzymes with discrete endopeptidase and carboxydipeptidase activities. Biol Chem 399:1223–1235. https://doi.org/10.1515/hsz-2018-0186
CAS
CrossRef
PubMed
Google Scholar
Paireder M, Tholen S, Porodko A et al (2017) The papain-like cysteine proteinases NbCysP6 and NbCysP7 are highly processive enzymes with substrate specificities complementary to Nicotiana benthamiana cathepsin B. Biochim Biophys Acta 1865:444–452. https://doi.org/10.1016/j.bbapap.2017.02.007
CAS
CrossRef
Google Scholar
Schardon K, Hohl M, Graff L et al (2016) Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases. Science 354(6319):1594–1597. https://doi.org/10.1126/science.aai8550
CAS
CrossRef
PubMed
Google Scholar
Lange J, Demir F, Huesgen PF et al (2018) Heterologous expression and characterization of a novel serine protease from Daphnia magna: a possible role in susceptibility to toxic cyanobacteria. Aquat Toxicol 205:140–147. https://doi.org/10.1016/j.aquatox.2018.09.013
CAS
CrossRef
PubMed
Google Scholar
Reichardt S, Repper D, Tuzhikov AI et al (2018) The tomato subtilase family includes several cell death-related proteinases with caspase specificity. Sci Rep 8:10531. https://doi.org/10.1038/s41598-018-28769-0
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Reichardt S, Piepho H-P, Stintzi A, Schaller A (2020) Peptide signaling for drought-induced tomato flower drop. Science 367:1482–1485. https://doi.org/10.1126/science.aaz5641
CAS
CrossRef
PubMed
Google Scholar
Misas Villamil JC, Mueller AN, Demir F et al (2019) A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif. Nat Commun 10:1576. https://doi.org/10.1038/s41467-019-09472-8
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Soh WT, Demir F, Dall E et al (2020) ExteNDing proteome coverage with legumain as highly specific digestion protease. Anal Chem 92:2961–2971. https://doi.org/10.1021/acs.analchem.9b03604
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Giansanti P, Tsiatsiani L, Low TY, Heck AJR (2016) Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protocols 11:993–1006. https://doi.org/10.1038/nprot.2016.057
CAS
CrossRef
PubMed
Google Scholar
Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protocols 11:2301–2319. https://doi.org/10.1038/nprot.2016.136
CAS
CrossRef
PubMed
Google Scholar
Röst HL, Sachsenberg T, Aiche S et al (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13:741–748. https://doi.org/10.1038/nmeth.3959
CAS
CrossRef
PubMed
Google Scholar
Deutsch EW, Mendoza L, Shteynberg D et al (2015) Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl 9:745–754. https://doi.org/10.1002/prca.201400164
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143. https://doi.org/10.1016/0003-2697(84)90782-6
CAS
CrossRef
PubMed
Google Scholar
Bateman A, Martin MJ, O’Donovan C et al (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099
CAS
CrossRef
Google Scholar
Maddelein D, Colaert N, Buchanan I, Hulstaert N, Gevaert K, Martens L (2015) The iceLogo web server and SOAP service for determining protein consensus sequences. Nucleic Acids Res 1;43(W1):W543–6. https://doi.org/10.1093/nar/gkv385