Skip to main content

Detection of Damage-Activated Metacaspase Activity by Western Blot in Plants

  • Protocol
  • First Online:
Plant Proteases and Plant Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2447))

Abstract

Metacaspases are cysteine proteases that are present in plants, protists, fungi, and bacteria. Previously, we found that physical damage, e.g., pinching with forceps or grinding on liquid nitrogen of plant tissues, activates Arabidopsis thaliana METACASPASE 4 (AtMCA4). AtMCA4 subsequently cleaves PROPEP1, the precursor pro-protein of the plant elicitor peptide 1 (Pep1). Here, we describe a protein extraction method to detect activation of AtMCA4 by Western blot with antibodies against endogenous AtMCA4 and a PROPEP1-YFP fusion protein. It is important to (1) keep plant tissues at all times on liquid nitrogen prior to protein extraction, and (2) denature the protein lysate as fast as possible, as metacaspase activation ensues quasi immediately because of tissue damage inherent to protein extraction. In theory, this method can serve to detect damage-induced alterations of any protein-of-interest in any organism for which antibodies or fusion proteins are available, and hence, will greatly aid the study of rapid damage-activated proteolysis in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uren AG, O’Rourke K, Aravind L et al (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6(4):961–967

    CAS  PubMed  Google Scholar 

  2. Rawlings ND, Barrett AJ, Thomas PD et al (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46(D1):D624–D632

    Article  CAS  Google Scholar 

  3. Tsiatsiani L, Van Breusegem F, Gallois P et al (2011) Metacaspases. Cell Death Differ 18(8):1279–1288

    Article  CAS  Google Scholar 

  4. Minina EA, Staal J, Alvarez VE et al (2020) Classification and nomenclature of metacaspases and paracaspases: no more confusion with caspases. Mol Cell 77(5):927–929

    Article  CAS  Google Scholar 

  5. Salvesen GS, Hempel A, Coll NS (2016) Protease signaling in animal and plant-regulated cell death. FEBS J 283(14):2577–2598

    Article  CAS  Google Scholar 

  6. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  CAS  Google Scholar 

  7. Vercammen D, van De Cotte B, De Jaeger G et al (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279(44):45329–45336

    Article  CAS  Google Scholar 

  8. Bozhkov PV, Suarez MF, Filonova LH et al (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci U S A 102(40):14463–14468

    Article  CAS  Google Scholar 

  9. Watanabe N, Lam E (2011) Calcium-dependent activation and autolysis of Arabidopsis metacaspase 2d. J Biol Chem 286(12):10027–10040

    Article  CAS  Google Scholar 

  10. Choi CJ, Berges JA (2013) New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases. Cell Death Dis 4(2):e490

    Article  CAS  Google Scholar 

  11. Klemenčič M, Funk C (2018) Type III metacaspases: calcium-dependent activity proposes new function for the p10 domain. New Phytol 218(3):1179–1191

    Article  Google Scholar 

  12. Coll NS, Vercammen D, Smidler A et al (2010) Arabidopsis type I metacaspases control cell death. Science 330(6009):1393–7

    Google Scholar 

  13. He R, Drury GE, Rotari VI et al (2008) Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. J Biol Chem 283(2):774–783

    Article  CAS  Google Scholar 

  14. Coll NS, Smidler A, Puigvert M et al (2014) The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death Differ 21(9):1399–1408

    Article  CAS  Google Scholar 

  15. Lema Asqui S, Vercammen D, Serrano I et al (2018) AtSERPIN1 is an inhibitor of the metacaspase AtMC1-mediated cell death and autocatalytic processing in planta. New Phytol 218(3):1156–1166

    Article  CAS  Google Scholar 

  16. Salguero-Linares J, Coll NS (2019) Plant proteases in the control of the hypersensitive response. J Exp Bot 70(7):2087–2095

    Article  CAS  Google Scholar 

  17. Hander T, Fernández-Fernández ÁD, Kumpf RP et al (2019) Damage on plants activates Ca2+ −dependent metacaspases for release of immunomodulatory peptides. Science 363(6433):eaar7486

    Article  CAS  Google Scholar 

  18. Vega-Muñoz I, Duran-Flores D, Fernández-Fernández ÁD et al (2020) Breaking bad news: dynamic molecular mechanisms of wound response in plants. Front Plant Sci 11:610445

    Article  Google Scholar 

  19. Bartels S, Lori M, Mbengue M et al (2013) The family of peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses. J Exp Bot 64(17):5309–5321

    Article  CAS  Google Scholar 

  20. Bartels S, Boller T (2015) Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. J Exp Bot 66(17):5183–5193

    Article  CAS  Google Scholar 

  21. Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 103(26):10098–10103

    Article  CAS  Google Scholar 

  22. Huffaker A, Pearce G, Veyrat N et al (2013) Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc Natl Acad Sci U S A 110(14):5707–5712

    Article  CAS  Google Scholar 

  23. Huffaker A, Ryan CA (2007) Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Natl Acad Sci U S A 104(25):10732–10736

    Article  CAS  Google Scholar 

  24. Yamaguchi Y, Huffaker A, Bryan AC et al (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22(2):508–522

    Article  CAS  Google Scholar 

  25. Krol E, Mentzel T, Chinchilla D et al (2010) Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J Biol Chem 285(18):13471–13479

    Article  CAS  Google Scholar 

  26. Shen W, Liu J, Li JF (2019) Type-II Metacaspases mediate the processing of plant elicitor peptides in Arabidopsis. Mol Plant 12(11):1524–1533

    Article  CAS  Google Scholar 

  27. Zhu P, Yu XH, Wang C et al (2020) Structural basis for Ca2+-dependent activation of a plant metacaspase. Nat Commun 11(1):2249

    Article  CAS  Google Scholar 

  28. Miller LP (2010) ImageJ gel analysis. http://www.lukemiller.org/ImageJ_gel_analysis.pdf. Accessed 13 June 2021

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  30. Rasband W (2012) ImageJ 1997–2012. U. S. National Institutes of Health, Bethesda

    Google Scholar 

  31. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27(2):157–162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Foundation-Flanders (FWO14/PDO/166 to SS), FWO-Fonds de la Recherche Scientifique (Excellence of Science project no. 30829584 to FVB), and Bijzonder Onderzoeksfonds UGent (BOF19/24 J/008; “DESTINY” Fate and function of metacaspase substrates).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Stael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stael, S., Miller, L.P., Fernández-Fernández, Á.D., Van Breusegem, F. (2022). Detection of Damage-Activated Metacaspase Activity by Western Blot in Plants. In: Klemenčič, M., Stael, S., Huesgen, P.F. (eds) Plant Proteases and Plant Cell Death. Methods in Molecular Biology, vol 2447. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2079-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2079-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2078-6

  • Online ISBN: 978-1-0716-2079-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics