Skip to main content

Small-Scale Secretory VHH Expression in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Single-Domain Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2446))

Abstract

After isolation of a single-domain antibody (VHH) binding to an antigen of interest, the soluble VHH is often produced in Escherichia coli. However, targeting VHH expression to the secretory pathway of Saccharomyces cerevisiae (baker’s yeast) enables the secretion of correctly folded, soluble, disulfide-bonded, and N-glycosylated VHHs into the culture medium. Here, we describe the small-scale production of VHHs in baker’s yeast in shaker flasks using both an episomal vector and a vector requiring genomic integration for higher VHH expression levels. This expression system results in the production of VHHs linked to the natural llama long hinge region including a single cysteine residue for partial dimerization. This format is especially suitable for the development of double antibody sandwich ELISAs by passive adsorption of unlabeled VHHs to polystyrene ELISA plates, antigen capture, and detection of the antigen of interest using a second biotinylated VHH. The procedures described here for detection of foot-and-mouth disease virus can also be applied to other antigens for which suitable VHHs are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Y, Huang H (2018) Expression of single-domain antibody in different systems. Appl Microbiol Biotechnol 102:539–551

    Article  CAS  Google Scholar 

  2. Harmsen MM, Fijten HPD, Engel B et al (2009) Passive immunization with llama single-domain antibody fragments reduces foot-and-mouth disease transmission between pigs. Vaccine 27:1904–1911

    Article  CAS  Google Scholar 

  3. Van de Laar T, Visser C, Holster M et al (2007) Increased heterologous protein production by Saccharomyces cerevisiae growing on ethanol as sole carbon source. Biotechnol Bioeng 96:483–494

    Article  Google Scholar 

  4. Gorlani A, de Haard H, Verrips T (2012) Expression of VHHs in Saccharomyces cerevisiae. Methods Mol Biol 911:277–286

    Article  CAS  Google Scholar 

  5. Van der Vaart JM, Pant N, Wolvers D et al (2006) Reduction in morbidity of rotavirus induced diarrhoea in mice by yeast produced monovalent llama-derived antibody fragments. Vaccine 24:4130–4137

    Article  Google Scholar 

  6. Harmsen MM, van Solt CB, Fijten HP (2009) Enhancement of toxin- and virus-neutralizing capacity of single-domain antibody fragments by N-glycosylation. Appl Microbiol Biotechnol 84:1087–1094

    Article  CAS  Google Scholar 

  7. Sagt CM, Kleizen B, Verwaal R et al (2000) Introduction of an N-glycosylation site increases secretion of heterologous proteins in yeasts. Appl Environ Microbiol 66:4940–4944

    Article  CAS  Google Scholar 

  8. Gorlani A, Lutje Hulsik D, Adams H et al (2012) Antibody engineering reveals the important role of J segments in the production efficiency of llama single-domain antibodies in Saccharomyces cerevisiae. Protein Eng Des Sel 25:39–46

    Article  CAS  Google Scholar 

  9. Harmsen MM, Fijten HPD, Westra DF et al (2015) Stabilizing effects of excipients on dissociation of intact (146S) foot-and-mouth disease virions into 12S particles during storage as oil-emulsion vaccine. Vaccine 33:2477–2484

    Article  CAS  Google Scholar 

  10. Harmsen MM, Van Solt CB, Fijten HPD et al (2007) Passive immunization of guinea-pigs with llama single-domain antibody fragments against foot-and-mouth disease. Vet Microbiol 120:193–206

    Article  CAS  Google Scholar 

  11. Harmsen MM, Fijten HPD (2012) Improved functional immobilization of llama single-domain antibody fragments to polystyrene surfaces using small peptides. J Immunoassay Immunochem 33:234–251

    Article  CAS  Google Scholar 

  12. Harmsen MM, Van Solt CB, Fijten HPD et al (2005) Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins. Vaccine 23:4926–4934

    Article  CAS  Google Scholar 

  13. Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Article  CAS  Google Scholar 

  14. Harmsen MM, van Solt CB, Hoogendoorn A et al (2005) Escherichia coli F4 fimbriae specific llama single-domain antibody fragments effectively inhibit bacterial adhesion in vitro but poorly protect against diarrhoea. Vet Microbiol 111:89–98

    Google Scholar 

  15. Erhart E, Hollenberg CP (1983) The presence of a defective LEU2 gene on 2 mu DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol 156:625–635

    Article  CAS  Google Scholar 

  16. van Dijken JP, Bauer J, Brambilla L et al (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26:706–714

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel M. Harmsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Harmsen, M.M., van Hagen-van Setten, M., Willemsen, P.T.J. (2022). Small-Scale Secretory VHH Expression in Saccharomyces cerevisiae. In: Hussack, G., Henry, K.A. (eds) Single-Domain Antibodies. Methods in Molecular Biology, vol 2446. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2075-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2075-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2074-8

  • Online ISBN: 978-1-0716-2075-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics