Skip to main content

Engineering pH-Sensitive Single-Domain Antibodies

  • Protocol
  • First Online:
Single-Domain Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2446))

Abstract

There is increasing interest in expanding an antibody beyond high affinity and specificity. One such feature is custom regulation of the binding event, such as pH-dependent control. Here, we provide a methodology for generating single-domain antibodies (sdAbs) that bind their antigen in a pH-dependent fashion. As each sdAb is unique, we start by providing the conceptual framework for designing a combinatorial histidine scanning library within a sdAb-antigen-binding interface. Methods are provided to create a phage display library, containing up to 1 × 1010 unique members where each permutation of histidine substitution is sampled within the confines of the specified interface region(s). Finally, we describe phage display protocols for the selection and analysis of unique pH-dependent sdAb clones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  CAS  Google Scholar 

  2. Rahbarizadeh F, Rasaee MJ, Forouzandeh-Moghadam M et al (2005) High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli. Protein Expr Purif 44:32–38

    Article  CAS  Google Scholar 

  3. Henry KA, MacKenzie CR (2018) Antigen recognition by single-domain antibodies: structural latitudes and constraints. MAbs 10:815–826

    Article  CAS  Google Scholar 

  4. Laursen NS, Friesen RHE, Zhu X et al (2018) Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science 362:598–602

    Article  CAS  Google Scholar 

  5. De Munter S, Ingels J, Goetgeluk G et al (2018) Nanobody based dual specific CARs. Int J Mol Sci 19:403

    Article  Google Scholar 

  6. Dong JX, Lee Y, Kirmiz M et al (2019) A toolbox of nanobodies developed and validated for use as intrabodies and nanoscale immunolabels in mammalian brain neurons. eLife 8:e48750

    Article  CAS  Google Scholar 

  7. Hussack G, Arbabi-Ghahroudi M, van Faassen H et al (2011) Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J Biol Chem 286:8961–8976

    Article  CAS  Google Scholar 

  8. Hussack G, Hirama T, Ding W et al (2011) Engineered single-domain antibodies with high protease resistance and thermal stability. PLoS One 6:e28218

    Article  CAS  Google Scholar 

  9. Hoey RJ, Eom H, Horn JR (2019) Structure and development of single domain antibodies as modules for therapeutics and diagnostics. Exp Biol Med 244:1568–1576

    Article  CAS  Google Scholar 

  10. Schonichen A, Webb BA, Jacobson MP et al (2013) Considering protonation as a posttranslational modification regulating protein structure and function. Annu Rev Biophys 42:289–314

    Article  CAS  Google Scholar 

  11. Chaparro-Riggers J, Liang H, DeVay RM et al (2012) Increasing serum half-life and extending cholesterol lowering in vivo by engineering antibody with pH-sensitive binding to PCSK9. J Biol Chem 287:11090–11097

    Article  CAS  Google Scholar 

  12. Igawa T, Ishii S, Tachibana T et al (2010) Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol 28:1203–1207

    Article  CAS  Google Scholar 

  13. Tawfik DS, Chap R, Eshhar Z et al (1994) pH on-off switching of antibody hapten binding by site-specific chemical modification of tyrosine. Protein Eng 7:431–434

    Article  CAS  Google Scholar 

  14. Davenport KR, Smith CA, Hofstetter H et al (2016) Site-directed immobilization of a genetically engineered anti-methotrexate antibody via an enzymatically introduced biotin label significantly increases the binding capacity of immunoaffinity columns. J Chromatogr B Analyt Technol Biomed Life Sci 1021:114–121

    Article  CAS  Google Scholar 

  15. Ito W, Sakato N, Fujio H et al (1992) The His-probe method: effects of histidine residues introduced into the complementarity-determining regions of antibodies on antigen-antibody interactions at different pH values. FEBS Lett 309:85–88

    Article  CAS  Google Scholar 

  16. Sidhu SS, Lowman HB, Cunningham BC et al (2000) Phage display for selection of novel binding peptides. Methods Enzymol 328:333–363

    Article  CAS  Google Scholar 

  17. Sidhu SS, Weiss GA (2004) Constructing phage display libraries by oligonucleotide-directed mutagenesis. In: Clackson T, Lowman HB (eds) Phage display: a practical approach. Oxford University Press, Oxford, pp 27–41

    Google Scholar 

  18. Murtaugh ML, Fanning SW, Sharma TM et al (2011) A combinatorial histidine scanning library approach to engineer highly pH-dependent protein switches. Protein Sci 20:1619–1631

    Article  CAS  Google Scholar 

  19. Pershad K, Sullivan MA, Kay BK (2011) Drop-out phagemid vector for switching from phage displayed affinity reagents to expression formats. Anal Biochem 412:210–216

    Article  CAS  Google Scholar 

  20. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82:488–492

    Article  CAS  Google Scholar 

  21. DeLano WL (2002) The PyMOL molecular graphics system. https://pymol.org/2/. Accessed 5 Jan 2021

  22. Tonikian R, Sidhu SS (2012) Selecting and purifying autonomous human variable heavy (VH) domains. Methods Mol Biol 911:327–353

    CAS  PubMed  Google Scholar 

  23. Huang R, Fang P, Kay BK (2012) Improvements to the Kunkel mutagenesis protocol for constructing primary and secondary phage-display libraries. Methods 58:10–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH grant 1R15GM124607 to J.R.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Laughlin, T.M., Horn, J.R. (2022). Engineering pH-Sensitive Single-Domain Antibodies. In: Hussack, G., Henry, K.A. (eds) Single-Domain Antibodies. Methods in Molecular Biology, vol 2446. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2075-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2075-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2074-8

  • Online ISBN: 978-1-0716-2075-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics