Skip to main content

Measuring Autophagic Cargo Flux with Keima-Based Probes

  • Protocol
  • First Online:
Book cover Autophagy and Cancer

Abstract

Autophagy and autophagy-associated genes are implicated in a growing list of cellular, physiological, and pathophysiological processes and conditions. Therefore, it is ever more important to be able to reliably monitor and quantify autophagic activity. Whereas autophagic markers, such as LC3 can provide general indications about autophagy, specific and accurate detection of autophagic activity requires assessment of autophagic cargo flux. Here, we provide protocols on how to monitor bulk and selective autophagy by the use of inducible expression of exogenous probes based on the fluorescent coral protein Keima. To exemplify and demonstrate the power of this system, we provide data obtained by analyses of cytosolic and mitochondrially targeted Keima probes in human retinal epithelial cells treated with the mTOR-inhibitor Torin1 or with the iron chelator deferiprone (DFP). Our data indicate that Torin1 induces autophagic flux of cytosol and mitochondria to a similar degree, that is, compatible with induction of bulk autophagy, whereas DFP induces a highly selective form of mitophagy that efficiently excludes cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A, Adamopoulos IE, Adeli K, Adolph TE, Adornetto A, Aflaki E et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) (1). Autophagy 17(1):1–382

    Article  Google Scholar 

  2. Szalai P, Hagen LK, Saetre F, Luhr M, Sponheim M, Overbye A, Mills IG, Seglen PO, Engedal N (2015) Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Exp Cell Res 333(1):21–38

    Article  CAS  Google Scholar 

  3. Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 18(8):1042–1052

    Article  CAS  Google Scholar 

  4. Sun N, Yun J, Liu J, Malide D, Liu C, Rovira II, Holmström KM, Fergusson MM, Yoo YH, Combs CA, Finkel T (2015) Measuring in vivo mitophagy. Mol Cell 60(4):685–696

    Article  CAS  Google Scholar 

  5. Hirota Y, Yamashita S, Kurihara Y, Jin X, Aihara M, Saigusa T, Kang D, Kanki T (2015) Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 11(2):332–343

    Article  Google Scholar 

  6. Sun N, Malide D, Liu J, Rovira II, Combs CA, Finkel T (2017) A fluorescence-based imaging method to measure in vitro and in vivo mitophagy using mt-Keima. Nat Protoc 12(8):1576–1587

    Article  CAS  Google Scholar 

  7. An H, Harper JW (2018) Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nat Cell Biol 20(2):135–143

    Article  CAS  Google Scholar 

  8. Lee IH, Yun J, Finkel T (2013) The emerging links between sirtuins and autophagy. Methods Mol Biol (Clifton, NJ) 1077:259–271

    Article  CAS  Google Scholar 

  9. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314

    Article  CAS  Google Scholar 

  10. Um JH, Kim YY, Finkel T, Yun J (2018) Sensitive measurement of mitophagy by flow cytometry using the pH-dependent fluorescent reporter mt-Keima. J Vis Exp (138):58099

    Google Scholar 

  11. Wang C (2020) A sensitive and quantitative mKeima assay for mitophagy via FACS. Curr Protoc Cell Biol 86(1):e99

    Article  Google Scholar 

  12. Kogure T, Karasawa S, Araki T, Saito K, Kinjo M, Miyawaki A (2006) A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat Biotechnol 24(5):577–581

    Article  CAS  Google Scholar 

  13. Lee JJ, Sanchez-Martinez A, Martinez Zarate A, Benincá C, Mayor U, Clague MJ, Whitworth AJ (2018) Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J Cell Biol 217(5):1613–1622

    Article  CAS  Google Scholar 

  14. Ahler E, Sullivan WJ, Cass A, Braas D, York AG, Bensinger SJ, Graeber TG, Christofk HR (2013) Doxycycline alters metabolism and proliferation of human cell lines. PLoS One 8(5):e64561

    Article  CAS  Google Scholar 

  15. Allen GF, Toth R, James J, Ganley IG (2013) Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 14(12):1127–1135

    Article  CAS  Google Scholar 

  16. Hara Y, Yanatori I, Tanaka A, Kishi F, Lemasters JJ, Nishina S, Sasaki K, Hino K (2020) Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Rep 21(11):e50202

    Article  CAS  Google Scholar 

  17. Heinz N, Schambach A, Galla M, Maetzig T, Baum C, Loew R, Schiedlmeier B (2011) Retroviral and transposon-based tet-regulated all-in-one vectors with reduced background expression and improved dynamic range. Hum Gene Ther 22(2):166–176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The following core facilities at Oslo University Hospital, Institute for Cancer Research, are acknowledged for providing access to equipment and expertise: The Core Facility for Confocal Microscopy and the Core Facility for Flow Cytometry. This work was supported by The Research Council of Norway (NANO2021; project number 274574 to MLT and TS), The Norwegian Cancer Society (Project number 198016-2018 to AU and NE), and The South-Eastern Norway Regional Health Authority (AUTOprost; Project number 2021088 to NE and JES).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nikolai Engedal or Maria L. Torgersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Engedal, N. et al. (2022). Measuring Autophagic Cargo Flux with Keima-Based Probes. In: Norberg, H., Norberg, E. (eds) Autophagy and Cancer. Methods in Molecular Biology, vol 2445. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2071-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2071-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2070-0

  • Online ISBN: 978-1-0716-2071-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics