Skip to main content

Induction and Detection of Mitophagy

Part of the Methods in Molecular Biology book series (MIMB,volume 2445)


Mitophagy, a process of selective elimination of mitochondria by autophagy, is a mechanism of mitochondrial quality control that maintains mitochondrial network functionality. The elimination of damaged mitochondria through autophagy requires two steps: induction of general autophagy and priming of damaged mitochondria for selective autophagic recognition. Mitophagy impairment is linked to various pathologies; thus, removal of malfunctioning or even harmful mitochondria is vital to cellular physiology. Here, we describe methods that can be applied to the investigation of mitophagy.

Key words

  • Mitophagy
  • Autophagy
  • Mitochondria
  • Respiration
  • Confocal microscopy
  • Flow cytometry

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2071-7_14
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2071-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26:733–744.

    CAS  CrossRef  PubMed  Google Scholar 

  2. Vara-Perez M, Felipe-Abrio B, Agostinis P (2019) Mitophagy in cancer: a tale of adaptation. Cells 8:493.

    CAS  CrossRef  PubMed Central  Google Scholar 

  3. Ibáñez P, Lesage S, Lohmann E et al (2006) Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain 129:686–694.

    CrossRef  PubMed  Google Scholar 

  4. Kerr JS, Adriaanse BA, Greig NH et al (2017) Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci 40:151–166.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Li X, Huang L, Lan J et al (2021) Molecular mechanisms of mitophagy and its roles in neurodegenerative diseases. Pharmacol Res 163:105240.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Luo H, Zhang R, Krigman J et al (2020) A healthy heart and a healthy brain: looking at mitophagy. Front Cell Dev Biol 8:294.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Bernardini JP, Lazarou M, Dewson G (2017) Parkin and mitophagy in cancer. Oncogene 36:1315–1327.

    CAS  CrossRef  PubMed  Google Scholar 

  8. Wu L, Zhang D, Zhou L et al (2019) FUN14 domain-containing 1 promotes breast cancer proliferation and migration by activating calcium-NFATC1-BMI1 axis. EBioMedicine 41:384–394.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Hui L, Wu H, Wang T-W et al (2019) Hydrogen peroxide-induced mitophagy contributes to laryngeal cancer cells survival via the upregulation of FUNDC1. Clin Transl Oncol 21:596–606.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Hou H, Er P, Cheng J et al (2017) High expression of FUNDC1 predicts poor prognostic outcomes and is a promising target to improve chemoradiotherapy effects in patients with cervical cancer. Cancer Med 6:1871–1881.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5.

    CAS  CrossRef  PubMed  Google Scholar 

  12. Sowter HM, Ratcliffe PJ, Watson P et al (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61:6669–6673

    CAS  PubMed  Google Scholar 

  13. Mooney RA (1988) [18] Use of digitonin-permeabilized adipocytes for cAMP studies, pp 193–202

    Google Scholar 

  14. Mauro-Lizcano M, Esteban-Martínez L, Seco E et al (2015) New method to assess mitophagy flux by flow cytometry. Autophagy 11:833–843.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol. 2010 Nov 29;191(5):933-42. doi:10.1083/jcb.201008084. PMID: 21115803; PMCID: PMC2995166.

    Google Scholar 

Download references


This research was funded by the Russian Science Foundation (grant 19-14-00122). The work in the authors’ laboratories was also supported by grants from the Russian Foundation for Basic Research (20-015-00105), Swedish Cancer Society (190345) and Stockholm Cancer Society (181301).

Conflict of Interests

The authors declare no conflict of interest.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Vladimir Gogvadze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Yapryntseva, M.A., Zhivotovsky, B., Gogvadze, V. (2022). Induction and Detection of Mitophagy. In: Norberg, H., Norberg, E. (eds) Autophagy and Cancer. Methods in Molecular Biology, vol 2445. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2070-0

  • Online ISBN: 978-1-0716-2071-7

  • eBook Packages: Springer Protocols