Skip to main content

Sample Preparation for Multicolor STED Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2440))

Abstract

Stimulated emission depletion (STED) microscopy is one of the optical superresolution microscopy (SRM) techniques, more recently also referred to as nanoscopy, that have risen to popularity among biologists during the past decade. These techniques keep pushing the physical boundaries of optical resolution toward the molecular scale. Thereby, they enable biologists to image cellular and tissue structures at a level of almost molecular detail that was previously only achievable using electron microscopy. All the while, they retain the advantages of light microscopy, in particular with regards to sample preparation and flexibility of imaging. Commercially available SRM setups have become more and more available and also increasingly sophisticated, both in terms of optical performance and, importantly, ease of use. Institutional microscopy core facilities now offer widespread access to this type of systems. However, the field has grown so rapidly, and keeps growing, that biologists can be easily overwhelmed by the multitude of available techniques and approaches. From this vast array of SRM modalities, STED stands out in one respect: it is essentially an extension to an advanced confocal microscope. Most experienced users of confocal microscopy will find the transition to STED microscopy relatively easy as compared with some other SRM techniques. This also applies to STED sample preparation. Nonetheless, because resolution in STED microscopy does not only depend on the wavelength of the incident light and the numerical aperture of the objective, but crucially also on the square root of the intensity of the depletion laser and, in general, on the photochemical interaction of the fluorophore with the depletion laser, some additional considerations are necessary in STED sample preparation. Here we describe the single color staining of the somatostatin receptor subtype 2A (SSTR2A) and dual color staining of the trans-Golgi-network protein TGN 38 and the t-SNARE syntaxin-6 for STED in the endocrine cell line AtT20 and STED imaging of the samples, providing the protocols in as general a form as possible. The protocols in this chapter are used in this way in an institutional microscopy core facility.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

BSA:

Bovine serum albumin

DMEM:

Dulbecco’s Modified Eagle’s Medium

FBS:

Fetal bovine serum

NA:

Numerical aperture

NGS:

Normal goat serum

PFA:

Paraformaldehyde solution

PBS:

Phosphate-buffered saline

PSF:

Point spread function

RI:

Refractive index

RT:

Room temperature

SNR :

Signal to noise ratio

SRM:

Super-resolution microscopy

SSTR2A:

Somatostatin receptor subtype 2A (mouse)

STED:

Stimulated emission depletion

TGN38:

A type 1 transmembrane protein located in the trans-Golgi network

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9:413–468

    Article  Google Scholar 

  2. Abbe E (1884) Note on the proper definition of the amplifying power of a lens or a lens-system. J R Microsc Soc 4:348–351

    Article  Google Scholar 

  3. Inoué S (2006) Handbook of biological confocal microscopy. Springer, Boston

    Google Scholar 

  4. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  PubMed  Google Scholar 

  5. Westphal V, Hell SW (2005) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94(14):143903

    Article  CAS  PubMed  Google Scholar 

  6. Han KY et al (2009) Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Lett 9(9):3323–3329

    Article  CAS  PubMed  Google Scholar 

  7. Willig KI et al (2007) STED microscopy with continuous wave beams. Nat Methods 4(11):915–918

    Article  CAS  PubMed  Google Scholar 

  8. Hama H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14(11):1481–1488

    Article  CAS  PubMed  Google Scholar 

  9. Birk, U.J., Super-resolution microscopy.. Wiley VCH Verlag GmbH, 2017

    Book  Google Scholar 

  10. Laflamme C et al (2019) Implementation of an antibody characterization procedure and application to the major ALS/FTD disease gene C9ORF72. elife 8

    Google Scholar 

  11. Vicidomini G et al (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8(7):571–573

    Article  CAS  PubMed  Google Scholar 

  12. Bianchini P et al (2015) STED nanoscopy: a glimpse into the future. Cell Tissue Res 360(1):143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chéreau R, Tønnesen J, Nägerl UV (2015) STED microscopy for nanoscale imaging in living brain slices. Methods 88:57–66

    Article  CAS  PubMed  Google Scholar 

  14. Tønnesen J et al (2011) Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys J 101(10):2545–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moneron G et al (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18(2):1302–1309

    Article  CAS  PubMed  Google Scholar 

  16. Deng S et al (2018) Effects of donor and acceptor's fluorescence lifetimes on the method of applying Forster resonance energy transfer in STED microscopy. J Microsc 269(1):59–65

    Article  CAS  PubMed  Google Scholar 

  17. Oracz J et al (2017) Photobleaching in STED nanoscopy and its dependence on the photon flux applied for reversible silencing of the fluorophore. Sci Rep 7(1):11354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63(4):429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wildanger D et al (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236(1):35–43

    Article  CAS  PubMed  Google Scholar 

  20. Göttfert F et al (2013) Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J 105(1):L01–L03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wurm CA et al (2012) Novel red fluorophores with superior performance in STED microscopy. Optical Nanoscopy 1(1):1–7

    Article  Google Scholar 

  22. Fendl S et al (2017) STED imaging in drosophila brain slices. Methods Mol Biol 1563:143–150

    Article  CAS  PubMed  Google Scholar 

  23. Tam J, Merino D (2015) Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. J Neurochem 135(4):643–658

    Article  CAS  PubMed  Google Scholar 

  24. Griesbeck O et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276(31):29188–29194

    Article  CAS  PubMed  Google Scholar 

  25. Hein B, Willig KI, Hell SW (2008) Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci U S A 105(38):14271–14276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wegner W et al (2017) In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins. Sci Rep 7(1):11781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang C et al (2019) A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae. Proc Natl Acad Sci U S A 116(32):15817–15822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bottanelli F et al (2016) Two-colour live-cell nanoscale imaging of intracellular targets. Nat Commun 7(1):1–5

    Article  CAS  Google Scholar 

  29. Lukinavicius G et al (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5(2):132–139

    Article  CAS  PubMed  Google Scholar 

  30. Erdmann RS, Toomre D, Schepartz A (2017) STED imaging of Golgi dynamics with Cer-SiR: a two-component, photostable, high-density lipid probe for live cells. Methods Mol Biol 1663:65–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vicidomini G, Bianchini P, Diaspro A (2018) STED super-resolved microscopy. Nat Methods 15(3):173–182

    Article  CAS  PubMed  Google Scholar 

  32. Spahn C et al (2019) Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett 19(1):500–505

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Discovery Grant RGPIN/06096-2016 from the Natural Sciences and Engineering Research Council of Canada (NSERC) and an operating grant to improve and develop super-resolution microscopy at the Montreal Neurological Institute by the Bachynski Family Foundation to T.S. W.A. was the holder of a Jeanne Timmins Costello Fellowship from the Montreal Neurological Institute. We are deeply thankful to Naomi Takeda for administrative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stroh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alshafie, W., Stroh, T. (2022). Sample Preparation for Multicolor STED Microscopy. In: Heit, B. (eds) Fluorescent Microscopy. Methods in Molecular Biology, vol 2440. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2051-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2051-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2050-2

  • Online ISBN: 978-1-0716-2051-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics