Skip to main content

Crystallization and Structural Determination of 8–17 DNAzyme

  • Protocol
  • First Online:
DNAzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2439))

Abstract

DNAzymes are a group of DNA molecules that can catalyze various chemical reactions. Owing to their great application potentials, DNAzymes have received significant attention. However, due to their intrinsic difficulties in crystallization and structural determination, only very limited structural information of DNAzymes is available to date. Using co-crystallization with the African Swine Fever Virus Polymerase X (AsfvPolX) protein, we have recently solved a complex structure of the 8–17 DNAzyme, which represents the first structure of the catalytically active RNA-cleaving DNAzyme. In this chapter, we describe the detailed protocols including gene construction, AsfvPolX expression and purification, crystallization, structure determination, and in vitro cleavage assay. While the specific methods described herein were originally designed for the 8–17 DNAzyme, they can also be utilized to solve other DNAzyme structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown AK, Li J, Pavot CM, Lu Y (2003) A lead-dependent DNAzyme with a two-step mechanism. Biochemistry 42:7152–7161

    Article  CAS  Google Scholar 

  2. Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A 94:4262–4266

    Article  CAS  Google Scholar 

  3. Kim HK, Liu JW, Li J, Nagraj N, Li MX et al (2007) Metal-dependent global folding and activity of the 8-17 DNAzyme studied by fluorescence resonance energy transfer. J Am Chem Soc 129:6896–6902

    Article  CAS  Google Scholar 

  4. Mazumdar D, Nagraj N, Kim HK, Meng X, Brown AK et al (2009) Activity, folding and Z-DNA formation of the 8-17 DNAzyme in the presence of monovalent ions. J Am Chem Soc 131:5506–5515

    Article  CAS  Google Scholar 

  5. Luciano DJ, Vasilyev N, Richards J, Serganov A, Belasco JG (2017) A novel RNA phosphorylation state enables 5′ end-dependent degradation in Escherichia coli. Mol Cell 67(44–54):e46

    Google Scholar 

  6. Chakraborti S, Banerjea AC (2003) Identification of cleavage sites in the HIV-1 TAR RNA by 10-23 and 8-17 catalytic motif containing DNA enzymes. Biomacromolecules 4:568–571

    Article  CAS  Google Scholar 

  7. Ekesan S, York DM (2019) Dynamical ensemble of the active state and transition state mimic for the RNA-cleaving 8-17 DNAzyme in solution. Nucleic Acids Res 47:10282–10295

    Article  CAS  Google Scholar 

  8. Schlosser K, Li YF (2010) A versatile endoribonuclease mimic made of DNA: characteristics and applications of the 8-17 RNA-cleaving DNAzyme. Chembiochem 11:866–879

    Article  CAS  Google Scholar 

  9. Pun SH, Tack F, Bellocq NC, Cheng J, Grubbs BH et al (2004) Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther 3:641–650

    Article  CAS  Google Scholar 

  10. Schlosser K, Gu J, Sule L, Li YF (2008) Sequence-function relationships provide new insight into the cleavage site selectivity of the 8-17 RNA-cleaving deoxyribozyme. Nucleic Acids Res 36:1472–1481

    Article  CAS  Google Scholar 

  11. Liu HH, Yu X, Chen YQ, Zhang J, Wu BX et al (2017) Crystal structure of an RNA-cleaving DNAzyme. Nat Commun 8:2006

    Article  Google Scholar 

  12. Chen YQ, Zhang J, Liu HH, Gao YQ, Li XH et al (2017) Unique 5'-P recognition and basis for dG:dGTP misincorporation of ASFV DNA polymerase X. PLoS Biol 15:e1002599

    Article  Google Scholar 

  13. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  14. Read RJ, Mccoy AJ, Storoni LC (2007) Likelihood-based molecular replacement in Phaser. Nato Sci Ser II 245:91–100

    CAS  Google Scholar 

  15. Wang XH, Liu HF, Liu YW, Li YT, Yan L et al (2016) A novel strategy for the preparation of codon-optimized truncated Ulp1 and its simplified application to cleavage the SUMO fusion protein. Protein J 35(2):115–123

    Article  Google Scholar 

  16. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution-from diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr 62:859–866

    Article  Google Scholar 

  17. Potterton E, Briggs P, Turkenburg M, Dodson E (2003) A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr 59:1131–1137

    Article  Google Scholar 

  18. Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ et al (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58:1948–1954

    Article  Google Scholar 

  19. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  Google Scholar 

  20. Fresco JR, Amosova O (2017) Site-specific self-catalyzed DNA depurination: a biological mechanism that leads to mutations and creates sequence diversity. Annu Rev Biochem 86:461–484

    Article  CAS  Google Scholar 

  21. Chandra M, Sachdeva A, Silverman SK (2009) DNA-catalyzed sequence-specific hydrolysis of DNA. Nat Chem Biol 5:718–720

    Article  CAS  Google Scholar 

  22. Cuenoud B, Szostak JW (1995) A DNA metalloenzyme with DNA ligase activity. Nature 375:611–614

    Article  CAS  Google Scholar 

  23. Wang W, Billen LP, Li YF (2002) Sequence diversity, metal specificity, and catalytic proficiency of metal-dependent phosphorylating DNA enzymes. Chem Biol 9:507–517

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (32171197 and 31870721), and US National Science Foundation (NSF CHE-1845486 and MCB-1715234).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Sheng or Jianhua Gan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, H., Mao, S., Sheng, J., Gan, J. (2022). Crystallization and Structural Determination of 8–17 DNAzyme. In: Steger, G., Rosenbach, H., Span, I. (eds) DNAzymes. Methods in Molecular Biology, vol 2439. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2047-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2047-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2046-5

  • Online ISBN: 978-1-0716-2047-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics