Skip to main content

Monoclonal Antibodies Generation: Updates and Protocols on Hybridoma Technology

Part of the Methods in Molecular Biology book series (MIMB,volume 2435)

Abstract

Since its inception in 1975, the hybridoma technology revolutionized science and medicine, facilitating discoveries in almost any field from the laboratory to the clinic. Many technological advancements have been developed since then, to create these “magical bullets.” Phage and yeast display libraries expressing the variable heavy and light domains of antibodies, single B-cell cloning from immunized animals of different species including humans or in silico approaches, all have rendered a myriad of newly developed antibodies or improved design of existing ones. However, still the majority of these antibodies or their recombinant versions are from hybridoma origin, a preferred methodology that trespass species barriers, due to the preservation of the natural functions of immune cells in producing the humoral response: antigen specific immunoglobulins. Remarkably, this methodology can be reproduced in small laboratories without the need of sophisticate equipment. In this chapter, we will describe the most recent methods utilized by our Monoclonal Antibodies Core Facility at the University of Texas–M.D. Anderson Cancer Center. During the last 10 years, the methods, techniques, and expertise implemented in our core had generated more than 350 antibodies for various applications.

Key words

  • Monoclonal antibodies (MAbs)
  • Hybridomas
  • Immunization
  • Subcloning
  • Purification
  • Functional antibodies

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2014-4_6
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2014-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497. https://doi.org/10.1038/256495a0

    CAS  CrossRef  PubMed  Google Scholar 

  2. Couzin-Frankel J (2013) Cancer immunotherapy. Science 342(6165):1432–1433. https://doi.org/10.1126/science.342.6165.1432

    CAS  CrossRef  PubMed  Google Scholar 

  3. Zhang J, Medeiros LJ, Young KH (2018) Cancer immunotherapy in diffuse large B-cell lymphoma. Front Oncol 8:351. https://doi.org/10.3389/fonc.2018.00351

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Giordano SH, Temin S, Chandarlapaty S, Crews JR, Esteva FJ, Kirshner JJ, Krop IE, Levinson J, Lin NU, Modi S, Patt DA, Perlmutter J, Ramakrishna N, Winer EP, Davidson NE (2018) Systemic therapy for patients with advanced human epidermal growth factor receptor 2-positive breast cancer: ASCO clinical practice guideline update. J Clin Oncol 36(26):2736–2740. https://doi.org/10.1200/JCO.2018.79.2697

    CrossRef  PubMed  Google Scholar 

  5. Modest DP, Denecke T, Pratschke J, Ricard I, Lang H, Bemelmans M, Becker T, Rentsch M, Seehofer D, Bruns CJ, Gebauer B, Modest HI, Held S, Folprecht G, Heinemann V, Neumann UP (2018) Surgical treatment options following chemotherapy plus cetuximab or bevacizumab in metastatic colorectal cancer-central evaluation of FIRE-3. Eur J Cancer 88:77–86. https://doi.org/10.1016/j.ejca.2017.10.028

    CAS  CrossRef  PubMed  Google Scholar 

  6. Urits I, Clark G, An D, Wesp B, Zhou R, Amgalan A, Berger AA, Kassem H, Ngo AL, Kaye AD, Kaye RJ, Cornett EM, Viswanath O (2020) An evidence-based review of Fremanezumab for the treatment of migraine. Pain Ther 9(1):195–215. https://doi.org/10.1007/s40122-020-00159-3

    CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Menegatti S, Bianchi E, Rogge L (2019) Anti-TNF therapy in Spondyloarthritis and related diseases, impact on the immune system and prediction of treatment responses. Front Immunol 10:382. https://doi.org/10.3389/fimmu.2019.00382

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Saphire EO, Schendel SL, Fusco ML, Gangavarapu K, Gunn BM, Wec AZ, Halfmann PJ, Brannan JM, Herbert AS, Qiu X, Wagh K, He S, Giorgi EE, Theiler J, Pommert K, Krause TB, Turner HL, Murin CD, Pallesen J, Davidson E et al (2018) Systematic analysis of monoclonal antibodies against Ebola virus GP defines features that contribute to protection. Cell 174(4):938–952.e13. https://doi.org/10.1016/j.cell.2018.07.033

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. U.S. Food and Drug Administration Coronavirus (COVID-19) Update: FDA authorizes monoclonal antibody for treatment of COVID-19. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibody-treatment-covid-19 (Accessed 9 2020)

  10. US Food and Drug Administration Coronavirus (COVID-19) Update: FDA authorizes monoclonal antibodies for treatment of COVID-19. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19 (Accessed 21 2020)

  11. Marhelava K, Pilch Z, Bajor M, Graczyk-Jarzynka A, Zagozdzon R (2019) Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers 11(11):1756. https://doi.org/10.3390/cancers11111756

    CAS  CrossRef  PubMed Central  Google Scholar 

  12. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2):205–214. https://doi.org/10.1016/j.cell.2015.03.030

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Rose S (2017) First-ever CAR T cell therapy approved in U.S. news in brief. Cancer Discov 7(10):OF1. https://doi.org/10.1158/2159-8290.CD-NB2017-126

    CrossRef  Google Scholar 

  14. Boyiadzis MM, Dhodapkar MV, Brentjens RJ, Kochenderfer JN, Neelapu SS, Maus MV, Porter DL, Maloney DG, Grupp SA, Mackall CL, June CH, Bishop MR (2018) Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. J Immunother Cancer 6(1):137. https://doi.org/10.1186/s40425-018-0460-5

    CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Poh A (2017) Equipping NK cells with CARs. News in brief. Cancer Discov 7(10):OF2. https://doi.org/10.1158/2159-8290.CD-NB2017-124

    CrossRef  Google Scholar 

  16. Mehta RS, Rezvani K (2018) Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol 9:283. https://doi.org/10.3389/fimmu.2018.00283

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Guo B, Fu S, Zhang J, Liu B, Li Z (2016) Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep 6:36107. https://doi.org/10.1038/srep36107

    CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Dagenais M, Dupaul-Chicoine J, Douglas T, Champagne C, Morizot A, Saleh M (2017) The interleukin (IL)-1R1 pathway is a critical negative regulator of PyMT-mediated mammary tumorigenesis and pulmonary metastasis. Onco Targets Ther 6(3):e1287247. https://doi.org/10.1080/2162402X.2017.1287247

    CrossRef  Google Scholar 

  19. Ritter B, Greten FR (2019) Modulating inflammation for cancer therapy. J Exp Med 216(6):1234–1243. https://doi.org/10.1084/jem.20181739

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ, CANTOS Trial Group (2017) Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390(10105):1833–1842. https://doi.org/10.1016/S0140-6736(17)32247-X

    CAS  CrossRef  PubMed  Google Scholar 

  21. Arumugam T, Deng D, Bover L, Wang H, Logsdon CD, Ramachandran V (2015) New blocking antibodies against novel AGR2-C4.4A pathway reduce growth and metastasis of pancreatic tumors and increase survival in mice. Mol Cancer Ther 14(4):941–951. https://doi.org/10.1158/1535-7163.MCT-14-0470

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Sergeeva A, Alatrash G, He H, Ruisaard K, Lu S, Wygant J, McIntyre BW, Ma Q, Li D, St John L, Clise-Dwyer K, Molldrem JJ (2011) An anti-PR1/HLA-A2 T-cell receptor-like antibody mediates complement-dependent cytotoxicity against acute myeloid leukemia progenitor cells. Blood 117(16):4262–4272. https://doi.org/10.1182/blood-2010-07-299248

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Meller S, Di Domizio J, Voo KS, Friedrich HC, Chamilos G, Ganguly D, Conrad C, Gregorio J, Le Roy D, Roger T, Ladbury JE, Homey B, Watowich S, Modlin RL, Kontoyiannis DP, Liu YJ, Arold ST, Gilliet M (2015) T(H)17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. Nat Immunol 16(9):970–979. https://doi.org/10.1038/ni.3211

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Fuery A, Leen AM, Peng R, Wong MC, Liu H, Ling PD (2018) Asian elephant T cell responses to elephant Endotheliotropic herpesvirus. J Virol 92(6):e01951–e01917. https://doi.org/10.1128/JVI.01951-17

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Voo KS, Bover L, Harline ML, Vien LT, Facchinetti V, Arima K, Kwak LW, Liu YJ (2013) Antibodies targeting human OX40 expand effector T cells and block inducible and natural regulatory T cell function. J Immunol 191(7):3641–3650. https://doi.org/10.4049/jimmunol.1202752

    CAS  CrossRef  PubMed  Google Scholar 

  26. Hu J, Vien LT, Xia X, Bover L, Li S (2014) Generation of a monoclonal antibody against the glycosylphosphatidylinositol-linked protein Rae-1 using genetically engineered tumor cells. Biol Proced Online 16(1):3. https://doi.org/10.1186/1480-9222-16-3

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Cao W, Bover L, Cho M, Wen X, Hanabuchi S, Bao M, Rosen DB, Wang YH, Shaw JL, Du Q, Li C, Arai N, Yao Z, Lanier LL, Liu YJ (2009) Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J Exp Med 206(7):1603–1614. https://doi.org/10.1084/jem.20090547

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Swaminathan A, Lucas RM, Dear K, McMichael AJ (2014) Keyhole limpet haemocyanin - a model antigen for human immunotoxicological studies. Br J Clin Pharmacol 78(5):1135–1142. https://doi.org/10.1111/bcp.12422

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Zhou H, Wang Y, Wang W, Jia J, Li Y, Wang Q, Wu Y, Tang J (2009) Generation of monoclonal antibodies against highly conserved antigens. PLoS One 4(6):e6087. https://doi.org/10.1371/journal.pone.0006087

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Yeung TL, Leung CS, Yip KP, Sheng J, Vien L, Bover LC, Birrer MJ, Wong S, Mok SC (2019) Anticancer immunotherapy by MFAP5 blockade inhibits fibrosis and enhances chemosensitivity in ovarian and pancreatic cancer. Clin Cancer Res 25(21):6417–6428. https://doi.org/10.1158/1078-0432.CCR-19-0187

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  31. FortéBio. High throughput Octet HTX and Octet RED384 systems 2020 [March 5, 2020]. https://www.fortebio.com/sites/default/files/en/assets/app-overview/characterizing-membrane-protein-interactions-by-bio-layer-interferometry.pdf

Download references

Acknowledgments

The authors would like to thank Janis Johnson, Julio Pollarolo, and Zhuang Wu, members of the MAF laboratory. The Cancer Center Support Grant (CCSG) P30 CA016672 for partially supporting UT-MDACC Shared resources. All the current and past users of our facility for selecting our laboratory to close collaborate in their projects. Finally, the Department of Immunology, chaired by Dr. James P. Allison, home of MAF.

Conflict of Interest: The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Bover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s)

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Muhsin, A., Rangel, R., Vien, L., Bover, L. (2022). Monoclonal Antibodies Generation: Updates and Protocols on Hybridoma Technology. In: McAllister, F. (eds) Cancer Immunoprevention. Methods in Molecular Biology, vol 2435. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2014-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2014-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2013-7

  • Online ISBN: 978-1-0716-2014-4

  • eBook Packages: Springer Protocols