Skip to main content

ROSALIND: Rapid Detection of Chemical Contaminants with In Vitro Transcription Factor-Based Biosensors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2433))

Abstract

ROSALIND (RNA Output Sensors Activated by Ligand Induction) is an in vitro biosensing system that detects small molecules using regulated transcription reactions. It consists of three key components: (1) RNA polymerases, (2) allosteric protein transcription factors, and (3) synthetic DNA transcription templates that together regulate the synthesis of a fluorescence-activating RNA aptamer. The system can detect a wide range of chemicals including antibiotics, small molecules, and metal ions. We have demonstrated that ROSALIND can be lyophilized and transported at ambient conditions for water testing on-site. Here, we describe how to set up a ROSALIND reaction for detecting various chemical contaminants in water using a model transcription factor as well as how to build a new ROSALIND sensor.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8(7):511–522. https://doi.org/10.1038/nrmicro2392

    Article  CAS  PubMed  Google Scholar 

  2. Slomovic S, Pardee K, Collins JJ (2015) Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci U S A 112(47):14429–14435. https://doi.org/10.1073/pnas.1508521112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Silverman AD, Karim AS, Jewett MC (2019) Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet. https://doi.org/10.1038/s41576-019-0186-3

  4. Pardee K (2018) Perspective: solidifying the impact of cell-free synthetic biology through lyophilization. Biochem Eng J 138:91–97. https://doi.org/10.1016/j.bej.2018.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Silverman AD, Akova U, Alam KK, Jewett MC, Lucks JB (2020) Design and optimization of a cell-free atrazine biosensor. ACS Synth Biol 9(3):671–677. https://doi.org/10.1021/acssynbio.9b00388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu X, Silverman AD, Alam KK, Iverson E, Lucks JB, Jewett MC, Raman S (2020) Design of a transcriptional biosensor for the portable, on-demand detection of cyanuric acid. ACS Synth Biol 9(1):84–94. https://doi.org/10.1021/acssynbio.9b00348

    Article  CAS  PubMed  Google Scholar 

  7. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19(8):751–755. https://doi.org/10.1038/90802

    Article  CAS  PubMed  Google Scholar 

  8. Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P, Collins JJ (2014) Paper-based synthetic gene networks. Cell 159(4):940–954. https://doi.org/10.1016/j.cell.2014.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jung JK, Alam KK, Verosloff MS, Capdevila DA, Desmau M, Clauer PR, Lee JW, Nguyen PQ, Pasten PA, Matiasek SJ, Gaillard JF, Giedroc DP, Collins JJ, Lucks JB (2020) Cell-free biosensors for rapid detection of water contaminants. Nat Biotechnol 38(12):1451–1459. https://doi.org/10.1038/s41587-020-0571-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Su Y, Hammond MC (2020) RNA-based fluorescent biosensors for live cell imaging of small molecules and RNAs. Curr Opin Biotechnol 63:157–166. https://doi.org/10.1016/j.copbio.2020.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alam KK, Tawiah KD, Lichte MF, Porciani D, Burke DH (2017) A fluorescent split aptamer for visualizing RNA-RNA assembly in vivo. ACS Synth Biol 6(9):1710–1721. https://doi.org/10.1021/acssynbio.7b00059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Conrad T, Plumbom I, Alcobendas M, Vidal R, Sauer S (2020) Maximizing transcription of nucleic acids with efficient T7 promoters. Commun Biol 3(1):439. https://doi.org/10.1038/s42003-020-01167-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Capdevila DA, Huerta F, Edmonds KA, Le MT, Wu H, Giedroc DP (2018) Tuning site-specific dynamics to drive allosteric activation in a pneumococcal zinc uptake regulator. elife 7. https://doi.org/10.7554/eLife.37268

  14. Susan Milburn MG, Winkler M (2003) Compositions and methods for increasing the yields of the in vitro RNA transcription and other polynucleotide synthetic reactions. United States Patent 6586219

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSF MCB RAPID (grant no. 1929912 to J.B.L.), the Crown Family Center for Jewish and Israel Studies at Northwestern University (to J.B.L.), Searle Funds at the Chicago Community Trust (to J.B.L.) and a Ryan Fellowship at Northwestern University (to J.K.J.).

Competing Interests

J.K.J., K.K.A. and J.B.L. have submitted a US provisional patent application (no. 62/758,242) relating to regulated IVT reactions and a US provisional patent application (no. 62/838,852) relating to the preservation and stabilization of IVT reactions. K.K.A. and J.B.L. are founders and have a financial interest in Stemloop, Inc. The latter interests are reviewed and managed by Northwestern University in accordance with their conflict-of-interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius B. Lucks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jung, J.K., Alam, K.K., Lucks, J.B. (2022). ROSALIND: Rapid Detection of Chemical Contaminants with In Vitro Transcription Factor-Based Biosensors. In: Karim, A.S., Jewett, M.C. (eds) Cell-Free Gene Expression. Methods in Molecular Biology, vol 2433. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1998-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1998-8_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1997-1

  • Online ISBN: 978-1-0716-1998-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics