Skip to main content

Cell-Free Membrane Protein Expression into Hybrid Lipid/Polymer Vesicles

Part of the Methods in Molecular Biology book series (MIMB,volume 2433)

Abstract

Hybrid membranes comprised of diblock copolymers, and phospholipids have gained interest due to their unique properties that result from blending natural and synthetic components. The integration of membrane proteins into these synthetic membranes is an important step towards creating biomembrane systems for uses such as artificial cellular systems, biosensors, and drug delivery vehicles. Here, we outline a technique to create hybrid membranes composed of phospholipids and diblock copolymers. Next, we describe how membrane proteins can be co-translationally integrated into hybrid lipid/polymer membranes using a cell-free reaction. We then outline a method to monitor insertion and folding of a membrane-embedded channel protein into the hybrid membrane using a fluorescent-protein reporter and dye release assay, respectively. This method is expected to be applicable for a wide range of membrane proteins that do not require chaperones for co-translational integration into vesicles and provides a generalized protocol for expressing a membrane protein into a membrane mimetic.

Key words

  • Membrane protein
  • Vesicles
  • Cell-free protein synthesis
  • Diblock copolymer
  • Hybrid membranes

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jacobs ML, Boyd MA, Kamat NP (2019) Diblock copolymers enhance folding of a mechanosensitive membrane protein during cell-free expression. Proc Natl Acad Sci U S A 116:4031–4036

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kowal J, Wu D, Mikhalevich V et al (2015) Hybrid polymer-lipid films as platforms for directed membrane protein insertion. Langmuir 31:4868–4877

    CrossRef  CAS  PubMed  Google Scholar 

  3. Beales PA, Khan S, Muench SP et al (2017) Durable vesicles for reconstitution of membrane proteins in biotechnology. Biochem Soc Trans 45:15–26

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  4. Allen JP (2017) Design of energy-transducing artificial cells. Proc Natl Acad Sci U S A 114:3790–3791

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koike S, Jahn R (2017) Probing and manipulating intracellular membrane traffic by microinjection of artificial vesicles. Proc Natl Acad Sci U S A 114:E9883–E9892

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci U S A 101:17669–17674

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Osaki T, Takeuchi S (2017) Artificial cell membrane systems for biosensing applications. Anal Chem 89:216–231

    CrossRef  CAS  PubMed  Google Scholar 

  8. Lentini R, Santero SP, Chizzolini F et al (2014) Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nat Commun 5:4012

    CrossRef  CAS  PubMed  Google Scholar 

  9. Ma X, Song Q, Gao X (2018) Reconstituted high-density lipoproteins: novel biomimetic nanocarriers for drug delivery. Acta Pharm Sin B 8:51–63

    CrossRef  PubMed  Google Scholar 

  10. Kumar M, Grzelakowski M, Zilles J et al (2007) Highly permeable polymeric membranes based on the incorporation of the functional water channel protein aquaporin Z. Proc Natl Acad Sci 104:20719–20724

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hediger MA, Romero MF, Peng J-B et al (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch Eur J Physiol 447:465–468

    CrossRef  CAS  Google Scholar 

  12. Discher BM, Won Y, Ege DS et al (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–1146

    CrossRef  CAS  PubMed  Google Scholar 

  13. de Hoog H-PM, Lin JieRong EM, Banerjee S et al (2014) Conformational antibody binding to a native, cell-free expressed GPCR in block copolymer membranes. PLoS One 9:e110847

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zaba C, Ritz S, Tan C-WD et al (2015) Functional cell adhesion receptors (integrins) in polymeric architectures. Chembiochem 16:1740–1743

    CrossRef  CAS  PubMed  Google Scholar 

  15. Hu Z, Ho JCS, Nallani M (2017) Synthetic (polymer) biology (membrane): functionalization of polymer scaffolds for membrane proteins. Curr Opin Biotechnol 46:51–56

    CrossRef  CAS  PubMed  Google Scholar 

  16. Schulz M, Binder WH (2015) Mixed hybrid lipid/polymer vesicles as a novel membrane platform. Macromol Rapid Commun 36:2031–2041

    CrossRef  CAS  PubMed  Google Scholar 

  17. Lim SK, de Hoog HP, Parikh AN et al (2013) Hybrid, nanoscale phospholipid/block copolymer vesicles. Polymers (Basel) 5:1102–1114

    CrossRef  CAS  Google Scholar 

  18. Shinoda T, Shinya N, Ito K et al (2016) Cell-free methods to produce structurally intact mammalian membrane proteins. Sci Rep 6:30442

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Okano T, Matsuura T, Suzuki H et al (2014) Cell-free protein synthesis in a microchamber revealed the presence of an optimum compartment volume for high-order reactions. ACS Synth Biol 3:347–352

    CrossRef  CAS  PubMed  Google Scholar 

  20. Kuruma Y, Ueda T (2015) The PURE system for the cell-free synthesis of membrane proteins. Nat Protoc 10:1328–1344

    CrossRef  CAS  PubMed  Google Scholar 

  21. Geertsma ER, Nik Mahmood NAB, Schuurman-Wolters GK et al (2008) Membrane reconstitution of ABC transporters and assays of translocator function. Nat Protoc 3:256–266

    CrossRef  CAS  PubMed  Google Scholar 

  22. Fiori MC, Jiang Y, Zheng W et al (2017) Polymer nanodiscs: discoidal amphiphilic block copolymer membranes as a new platform for membrane proteins. Sci Rep 7:15227

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta Biomembr 1666:105–117

    CrossRef  CAS  Google Scholar 

  24. Waldo GS, Standish BM, Berendzen J et al (1999) Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17:691–695

    CrossRef  CAS  PubMed  Google Scholar 

  25. Panganiban B, Qiao B, Jiang T et al (2018) Random heteropolymers preserve protein function in foreign environments. Science 359:1239–1243

    CrossRef  CAS  PubMed  Google Scholar 

  26. Mini-Extruder Extrusion Technique. https://avantilipids.com/divisions/equipment-products/mini-extruder-extrusion-technique

  27. Nam J, Beales PA, Vanderlick TK (2011) Giant phospholipid/block copolymer hybrid vesicles: mixing behavior and domain formation. Langmuir 27:1–6

    CrossRef  CAS  PubMed  Google Scholar 

  28. Koçer A (2010) Functional liposomal membranes for triggered release. In: Methods in molecular biology, pp 243–255

    Google Scholar 

  29. Kreimer S, Ivanov AR (2017) Rapid isolation of extracellular vesicles from blood plasma with size-exclusion chromatography followed by mass spectrometry-based proteomic profiling. In: Kuo WP, Jia S (eds) Extracellular vesicles: methods and protocols. Methods in molecular biology. Humana Press, New York, pp 295–302

    CrossRef  Google Scholar 

  30. Popot JL, Engelman DM (2016) Membranes do not tell proteins how to fold. Biochemistry 55:5–18

    CrossRef  CAS  PubMed  Google Scholar 

  31. Berrier C, Guilvout I, Bayan N et al (2011) Coupled cell-free synthesis and lipid vesicle insertion of a functional oligomeric channel MscL. Biochim Biophys Acta Biomembr 1808:41–46

    CrossRef  CAS  Google Scholar 

  32. Harris NJ, Reading E, Ataka K et al (2017) Structure formation during translocon-unassisted co-translational membrane protein folding. Sci Rep 7:8021

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klammt C, Schwarz D, Lohr F et al (2006) Cell-free expression as an emerging technique for the large scale production of integral membrane protein. FEBS J 273:4141–4153

    CrossRef  CAS  PubMed  Google Scholar 

  34. Niwa T, Sasaki Y, Uemura E et al (2016) Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system. Sci Rep 5:18025

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Air Force Office of Scientific Research (AFOSR) YIP FA9550-19-1-0039 P00001 to NPK and NSF grant MCB-1935356 (NPK). M.L.J. was supported by Grant No. T32GM008382 from the National Institute of General Medical Sciences and The American Heart Association Predoctoral Fellowship under Grant No. 20PRE35180215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha P. Kamat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jacobs, M.L., Kamat, N.P. (2022). Cell-Free Membrane Protein Expression into Hybrid Lipid/Polymer Vesicles. In: Karim, A.S., Jewett, M.C. (eds) Cell-Free Gene Expression. Methods in Molecular Biology, vol 2433. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1998-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1998-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1997-1

  • Online ISBN: 978-1-0716-1998-8

  • eBook Packages: Springer Protocols