Abstract
Intracellular trafficking of organelles driven by molecular motors underlies essential cellular processes. Mitochondria, the powerhouses of the cell, are one of the major cargoes of molecular motors. Efficient distribution of mitochondria ensures cellular fitness while defects in this process contribute to severe pathologies, such as neurodegenerative diseases. Reconstitution of the mitochondrial microtubule-based transport in vitro in a bottom-up approach provides a powerful tool to investigate the mitochondrial trafficking machinery in a controlled environment in the absence of complex intracellular interactions. In this chapter, we describe the procedures for achieving such reconstitution of mitochondrial transport.
Key words
- Molecular motors
- Adaptor proteins
- Kinesin-1
- TRAK
- Mitochondria
- Motility assay
- TIRF microscopy
- Interference reflection microscopy
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Tanaka Y, Kanai Y, Okada Y et al (1998) Targeted disruption of mouse conventional kinesin heavy chain kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158. https://doi.org/10.1016/S0092-8674(00)81459-2
Chang DTW, Reynolds IJ (2006) Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 80:241–268. https://doi.org/10.1016/j.pneurobio.2006.09.003
Correia SC, Perry G, Moreira PI (2016) Mitochondrial traffic jams in Alzheimer’s disease—pinpointing the roadblocks. Biochim Biophys Acta Mol basis Dis 1862:1909–1917. https://doi.org/10.1016/j.bbadis.2016.07.010
Hsieh C-H, Shaltouki A, Gonzalez AE et al (2016) Functional impairment in Miro degradation and Mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19:709–724. https://doi.org/10.1016/j.stem.2016.08.002
Ahmad T, Mukherjee S, Pattnaik B et al (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33:994–1010. https://doi.org/10.1002/embj.201386030
Dong L-F, Kovarova J, Bajzikova M et al (2017) Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife 6:e22187. https://doi.org/10.7554/eLife.22187
Rustom A, Saffrich R, Markovic I et al (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010. https://doi.org/10.1126/science.1093133
Bajzikova M, Kovarova J, Coelho AR et al (2019) Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab 29:399–416.e10. https://doi.org/10.1016/j.cmet.2018.10.014
Tan AS, Baty JW, Dong L-F et al (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 21:81–94. https://doi.org/10.1016/j.cmet.2014.12.003
Wang X, Schwarz TL (2009) The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136:163–174. https://doi.org/10.1016/j.cell.2008.11.046
Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75. https://doi.org/10.1038/317073a0
Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50. https://doi.org/10.1016/s0092-8674(85)80099-4
Vale RD, Schnapp BJ, Mitchison T et al (1985) Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell 43:623–632. https://doi.org/10.1016/0092-8674(85)90234-X
Stowers RS, Megeath LJ, Górska-Andrzejak J et al (2002) Axonal transport of mitochondria to synapses depends on Milton, a novel drosophila protein. Neuron 36:1063–1077. https://doi.org/10.1016/S0896-6273(02)01094-2
Brickley K, Smith MJ, Beck M, Stephenson FA (2005) GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J Biol Chem 280:14723–14732. https://doi.org/10.1074/jbc.M409095200
Fransson Å, Ruusala A, Aspenström P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344:500–510. https://doi.org/10.1016/j.bbrc.2006.03.163
Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires Milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545–557. https://doi.org/10.1083/jcb.200601067
van Spronsen M, Mikhaylova M, Lipka J et al (2013) TRAK/Milton Motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77:485–502. https://doi.org/10.1016/j.neuron.2012.11.027
Brickley K, Stephenson FA (2011) Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem 286:18079–18092
Guo X, Macleod GT, Wellington A et al (2005) The GTPase dMiro is required for axonal transport of mitochondria to drosophila synapses. Neuron 47:379–393. https://doi.org/10.1016/j.neuron.2005.06.027
Liu X, Hajnóczky G (2009) Ca2+−dependent regulation of mitochondrial dynamics by the Miro-Milton complex. Int J Biochem Cell Biol 41:1972–1976. https://doi.org/10.1016/j.biocel.2009.05.013
MacAskill AF, Rinholm JE, Twelvetrees AE et al (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61:541–555. https://doi.org/10.1016/j.neuron.2009.01.030
Desai SP, Bhatia SN, Toner M, Irimia D (2013) Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J 104:2077–2088
Nguyen TT, Oh SS, Weaver D et al (2014) Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proc Natl Acad Sci 111:E3631–E3640
Gell C, Bormuth V, Brouhard GJ et al (2010) Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol 95:221–245. https://doi.org/10.1016/S0091-679X(10)95013-9
Mahamdeh M, Howard J (2019) Implementation of interference reflection microscopy for label-free, high-speed imaging of microtubules. J Vis Exp:e59520. https://doi.org/10.3791/59520
Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682
Ruhnow F, Kloβ L, Diez S (2017) Challenges in estimating the motility parameters of single processive motor proteins. Biophys J 113:2433–2443
Henrichs V, Grycova L, Barinka C et al (2020) Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat Commun 11:3123. https://doi.org/10.1038/s41467-020-16972-5
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Puttrich, V., Rohlena, J., Braun, M., Lansky, Z. (2022). In Vitro Reconstitution of Molecular Motor-Driven Mitochondrial Transport. In: Vagnoni, A. (eds) Axonal Transport. Methods in Molecular Biology, vol 2431. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1990-2_28
Download citation
DOI: https://doi.org/10.1007/978-1-0716-1990-2_28
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-1989-6
Online ISBN: 978-1-0716-1990-2
eBook Packages: Springer Protocols