Skip to main content
Book cover

Microtubules pp 291–302Cite as

Cargo Transport by Microtubule-Associated Motor Protein Along Mechanically Deformed Microtubules

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2430))

Abstract

Mechanical forces play pivotal roles in regulating various cellular functions. Biomolecular motor protein-driven intracellular transportation is one example which is affected by mechanical forces, although the mechanism at molecular level is unknown. In this chapter, we describe deformation of microtubules under compressive stress and we show that such deformation of microtubules affects the kinetics of dynein-driven cargo transportation along the microtubules. The extent of alteration in the kinetics of dynein-driven transportation is found strongly dependent on the extent of deformation of microtubules under compressive stress.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  2. Alberts PB, Johnson A, Lewis J et al (2008) Molecular biology of cell, 5th edn. Garland Science, New York, NY

    Google Scholar 

  3. Rodriguez OC, Schaefer AW, Mandato CA et al (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599–609. https://doi.org/10.1038/ncb0703-599

    Article  Google Scholar 

  4. Schaedel L, John K, Gaillard J et al (2015) Microtubules self-repair in response to mechanical stress. Nat Mater 14:1156–1163. https://doi.org/10.1038/nmat4396

    Article  Google Scholar 

  5. Davis LJ, Odde DJ, Block SM, Gross SP (2002) The importance of lattice defects in katanin-mediated microtubule severing in vitro. Biophys J 82:2916–2927. https://doi.org/10.1016/S0006-3495(02)75632-4

    Article  Google Scholar 

  6. Kononova O, Kholodov Y, Theisen KE et al (2014) Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico. J Am Chem Soc 136:17036–17045. https://doi.org/10.1021/ja506385p

    Article  Google Scholar 

  7. Jiang N, Bailey ME, Burke J et al (2017) Modeling the effects of lattice defects on microtubule breaking and healing. Cytoskeleton 74:3–17. https://doi.org/10.1002/cm.21346

    Article  Google Scholar 

  8. Ahmed WW, Li TC, Rubakhin SS et al (2012) Mechanical tension modulates local and global vesicle dynamics in neurons. Cell Mol Bioeng 5:155–164. https://doi.org/10.1007/s12195-012-0223-1

    Article  Google Scholar 

  9. Gramlich MW, Conway L, Liang WH et al (2017) Single molecule investigation of kinesin-1 motility using engineered microtubule defects. Sci Rep 7:44290. https://doi.org/10.1038/srep44290

    Article  Google Scholar 

  10. Liang WH, Li Q, Rifat Faysal KM et al (2016) Microtubule defects influence kinesin-based transport in vitro. Biophys J 110:2229–2240. https://doi.org/10.1016/j.bpj.2016.04.029

    Article  Google Scholar 

  11. Tang-Schomer MD, Patel AR, Baas PW, Smith DH (2010) Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J 24:1401–1410. https://doi.org/10.1096/fj.09-142844

    Article  Google Scholar 

  12. Robison P, Caporizzo MA, Ahmadzadeh H et al (2016) Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 352:aaf0659. https://doi.org/10.1126/science.aaf0659

    Article  Google Scholar 

  13. Tang-Schomer MD, Johnson VE, Baas PW et al (2012) Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol 233:364–372. https://doi.org/10.1016/j.expneurol.2011.10.030

    Article  Google Scholar 

  14. Kabir AMR, Inoue D, Hamano Y et al (2014) Biomolecular motor modulates mechanical property of microtubule. Biomacromolecules 15:1797–1805. https://doi.org/10.1021/bm5001789

    Article  Google Scholar 

  15. Kabir AMR, Inoue D, Afrin T et al (2015) Buckling of microtubules on a 2D elastic medium. Sci Rep 5:17222. https://doi.org/10.1038/srep17222

    Article  Google Scholar 

  16. Nasrin SR, Afrin T, Kabir AMR et al (2020) Regulation of biomolecular-motor-driven cargo transport by microtubules under mechanical stress. ACS Appl Bio Mater 3:1875–1883. https://doi.org/10.1021/acsabm.9b01010

    Article  Google Scholar 

  17. Nasrin SR, Kabir AMR, Sada K, Kakugo A (2020) Effect of microtubule immobilization by glutaraldehyde on kinesin-driven cargo transport. Polym J. https://doi.org/10.1038/s41428-020-0309-x

  18. Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol:86–89. https://doi.org/10.1038/nbt765

  19. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88. https://doi.org/10.1016/S1046-5928(03)00218-3

    Article  Google Scholar 

  20. Peloquin J, Komarova Y, Borisy G (2005) Conjugation of fluorophores to tubulin. Nat Methods 2:299–303. https://doi.org/10.1038/nmeth0405-299

    Article  Google Scholar 

  21. Case RB, Pierce DW, Hom-Booher N, et al (1997) The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90:959–966. https://doi.org/10.1016/S0092-8674(00)80360-8

  22. Torisawa T, Ichikawa M, Furuta A et al (2014) Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein. Nat Cell Biol 16:1118–1124. https://doi.org/10.1038/ncb3048

    Article  Google Scholar 

  23. Kabir AMR, Inoue D, Kakugo A et al (2011) Prolongation of the active lifetime of a biomolecular motor for in vitro motility assay by using an inert atmosphere. Langmuir 27:13659–13668. https://doi.org/10.1021/la202467f

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Molecular Engine (Grant No. 18H05423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kakugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nasrin, S.R., Kabir, A.M.R., Kakugo, A. (2022). Cargo Transport by Microtubule-Associated Motor Protein Along Mechanically Deformed Microtubules. In: Inaba, H. (eds) Microtubules. Methods in Molecular Biology, vol 2430. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1983-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1983-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1982-7

  • Online ISBN: 978-1-0716-1983-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics