Skip to main content

Assembling Microtubule-Based Active Matter

  • Protocol
  • First Online:
Microtubules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2430))

Abstract

Studied for more than a century, equilibrium liquid crystals provided insight into the properties of ordered materials, and led to commonplace applications such as display technology. Active nematics are a new class of liquid crystal materials that are driven out of equilibrium by continuous motion of the constituent anisotropic units. A versatile experimental realization of active nematic liquid crystals is based on rod-like cytoskeletal filaments that are driven out of equilibrium by molecular motors. We describe protocols for assembling microtubule-kinesin based active nematic liquid crystals and associated isotropic fluids. We describe the purification of each protein and the assembly process of a two-dimensional active nematic on a water–oil interface. Finally, we show examples of nematic formation and describe methods for quantifying their non-equilibrium dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu H-Y, Nazockdast E, Shelley MJ, Needleman DJ (2017) Forces positioning the mitotic spindle: theories, and now experiments. BioEssays 39:1600212. https://doi.org/10.1002/bies.201600212

    Article  Google Scholar 

  2. Needleman D, Dogic Z (2017) Active matter at the interface between materials science and cell biology. Nat Rev Mater 2:17048

    Article  Google Scholar 

  3. Marchetti MC, Joanny JF, Ramaswamy S et al (2013) Hydrodynamics of soft active matter. Rev Mod Phys 85:1143–1189. https://doi.org/10.1103/RevModPhys.85.1143

    Article  Google Scholar 

  4. Nédélec FJ, Surrey T, Maggs AC, Leibler S (1997) Self-organization of microtubules and motors. Nature 389:305–308. https://doi.org/10.1038/38532

    Article  Google Scholar 

  5. Sanchez T, Chen DTN, Decamp SJ et al (2012) Spontaneous motion in hierarchically assembled active matter. Nature 491:431–434. https://doi.org/10.1038/nature11591

    Article  Google Scholar 

  6. DeCamp SJ, Redner GS, Baskaran A et al (2015) Orientational order of motile defects in active nematics. Nat Mater 14:1110–1115. https://doi.org/10.1038/nmat4387

    Article  Google Scholar 

  7. Duclos G, Adkins R, Banerjee D et al (2020) Topological structure and dynamics of three-dimensional active nematics. Science 367:1120–1124. https://doi.org/10.1126/science.aaz4547

    Article  Google Scholar 

  8. Keber FC, Loiseau E, Sanchez T et al (2014) Topology and dynamics of active nematic vesicles. Science 345:1135–1139. https://doi.org/10.1126/science.1254784

    Article  Google Scholar 

  9. Guillamat P, Ignés-Mullol J, Sagués F (2016) Control of active liquid crystals with a magnetic field. Proc Natl Acad Sci U S A 113:5498–5502. https://doi.org/10.1073/pnas.1600339113

    Article  Google Scholar 

  10. Thampi SP, Golestanian R, Yeomans JM (2014) Instabilities and topological defects in active nematics. Europhys Lett 105:18001. https://doi.org/10.1209/0295-5075/105/18001

    Article  Google Scholar 

  11. Opathalage A, Norton MM, Juniper MPN et al (2019) Self-organized dynamics and the transition to turbulence of confined active nematics. Proc Natl Acad Sci U S A 116:4788–4797. https://doi.org/10.1073/pnas.1816733116

    Article  Google Scholar 

  12. Ellis PW, Pearce DJG, Chang YW et al (2018) Curvature-induced defect unbinding and dynamics in active nematic toroids. Nat Phys 14:85–90. https://doi.org/10.1038/NPHYS4276

    Article  Google Scholar 

  13. Giomi L, Bowick MJ, Ma X, Marchetti MC (2013) Defect annihilation and proliferation in active Nematics. Phys Rev Lett 110:228101. https://doi.org/10.1103/PhysRevLett.110.228101

    Article  Google Scholar 

  14. Narayan V, Ramaswamy S, Menon N (2007) Long-lived Giant number fluctuations in a swarming granular Nematic. Science 317:105–108. https://doi.org/10.1126/science.1140414

    Article  Google Scholar 

  15. Wu K-T, Hishamunda JB, Chen DTN et al (2017) Transition from turbulent to coherent flows in confined three-dimensional active fluids. Science 355:eaal1979

    Article  MathSciNet  Google Scholar 

  16. Lemma LM, DeCamp SJ, You Z et al (2019) Statistical properties of autonomous flows in 2D active nematics. Soft Matter 15:3264–3272. https://doi.org/10.1039/C8SM01877D

    Article  Google Scholar 

  17. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization- depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88. https://doi.org/10.1016/S1046-5928(03)00218-3

    Article  Google Scholar 

  18. Hyman A, Drechsel D, Kellogg D et al (1991) Preparation of modified tubulins. Methods Enzymol 196:478–485

    Article  Google Scholar 

  19. Hilitski F, Ward AR, Cajamarca L et al (2015) Measuring cohesion between macromolecular filaments one pair at a time: depletion-induced microtubule bundling. Phys Rev Lett 114:138102. https://doi.org/10.1103/PhysRevLett.114.138102

    Article  Google Scholar 

  20. Chandrakar P, Berezney J, Lemma B et al (2018) Microtubule-based active fluids with improved lifetime, temporal stability and miscibility with passive soft materials. https://arxiv.org/abs/1811.05026

  21. Hyman AA, Salser S, Drechsel DN et al (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol Biol Cell 3:1155–1167. https://doi.org/10.1091/mbc.3.10.1155

    Article  Google Scholar 

  22. Sanchez T, Welch D, Nicastro D, Dogic Z (2011) Cilia-like beating of active microtubule bundles. Science 333:456–459. https://doi.org/10.1126/science.1203963

    Article  Google Scholar 

  23. Berliner E, Mahtani HK, Karki S et al (1994) Microtubule movement by a biotinated kinesin bound to streptavidin-coated surface. J Biol Chem 269:8610–8615

    Article  Google Scholar 

  24. Woehlke G, Schliwa M (2000) Walking on two heads: the many talents of kinesin. Nat Rev Mol Cell Biol 1:50–58. https://doi.org/10.1038/35036069

    Article  Google Scholar 

  25. Huang TG, Hackney DD (1994) Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization. J Biol Chem 269:16493–16501

    Article  Google Scholar 

  26. Gilbert SP, Johnson KA (1993) Expression, purification, and characterization of the Drosophila kinesin motor domain produced in Escherichia coli. Biochemistry 32:4677–4684. https://doi.org/10.1021/bi00068a028

    Article  Google Scholar 

  27. Müller MJI, Klumpp S, Lipowsky R (2008) Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc Natl Acad Sci U S A 105:4609–4614. https://doi.org/10.1073/pnas.0706825105

    Article  Google Scholar 

  28. Lau AWC, Prasad A, Dogic Z (2009) Condensation of isolated semi-flexible filaments driven by depletion interactions. EPL 87:48006. https://doi.org/10.1209/0295-5075/87/48006

    Article  Google Scholar 

  29. Schwarz-Linek J, Valeriani C, Cacciuto A et al (2012) Phase separation and rotor self-assembly in active particle suspensions. Proc Natl Acad Sci U S A 109:4052–4057. https://doi.org/10.1073/pnas.1116334109

    Article  Google Scholar 

  30. Shribak M, Oldenbourg R (2003) Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Appl Opt 42:3009–3017. https://doi.org/10.1364/AO.42.003009

    Article  Google Scholar 

  31. Purich DL, Kristofferson D (1984) Microtubule assembly: a review of Progress, principles, and perspectives. Adv Protein Chem 36:133–212

    Article  Google Scholar 

  32. Henkin G, DeCamp SJ, Chen DTN et al (2014) Tunable dynamics of microtubule-based active isotropic gels. Phil Trans R Soc A 372:20140142. https://doi.org/10.1098/rsta.2014.0142

    Article  Google Scholar 

  33. Schnitzer MJ, Block SM (1997) Kinesin hydrolyses one ATP per 8-nm step. Nature 388:386–390. https://doi.org/10.1038/41111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvonimir Dogic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tayar, A.M., Lemma, L.M., Dogic, Z. (2022). Assembling Microtubule-Based Active Matter. In: Inaba, H. (eds) Microtubules. Methods in Molecular Biology, vol 2430. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1983-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1983-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1982-7

  • Online ISBN: 978-1-0716-1983-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics