Skip to main content

Quantification of Muscle Stem Cell Differentiation Using Live-Cell Imaging and Eccentricity Measures

  • Protocol
  • First Online:
Stem Cell Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2429))

Abstract

Culturing primary muscle stem cells ex vivo is a useful method for studying this cell population in controlled environments. Primary muscle stem cells respond to external stimuli differently than immortalized myoblasts (C2C12 cells), making ex vivo culture of muscle stem cells an important tool in understanding cell responses to stimuli. Primary muscle stem cells cultured ex vivo retain a majority of the characteristics they possess in vivo such as the abilities to differentiate into multinucleated structures, and self-renew a stem cell-like population. In this chapter, we describe methods for isolating primary muscle stem cells, controlled differentiation into myotubes, and quantification of differentiation using IncuCyte live cell imaging and analysis software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138(17):3625–3637. https://doi.org/10.1242/dev.064162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67

    Article  CAS  Google Scholar 

  3. Montarras D, L’honoré A, Buckingham M (2013) Lying low but ready for action: the quiescent muscle satellite cell. FEBS J. https://doi.org/10.1111/febs.12372

  4. Tidball JG (2017) Regulation of muscle growth and regeneration by the immune system. Nat Rev Immunol 17(3):165–178. https://doi.org/10.1038/nri.2016.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kästner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z (2000) Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48(8):1079–1096

    Article  Google Scholar 

  6. Bischoff R (1990) Interaction between satellite cells and skeletal muscle fibers. Development 109(4):943–952

    Article  CAS  Google Scholar 

  7. Pawlikowski B, Pulliam C, Betta ND, Kardon G, Olwin BB (2015) Pervasive satellite cell contribution to uninjured adult muscle fibers. Skelet Muscle 5:42. https://doi.org/10.1186/s13395-015-0067-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bosnakovski D, Xu Z, Li W, Thet S, Cleaver O, Perlingeiro RCR, Kyba M (2008) Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells 26(12):3194–3204. https://doi.org/10.1634/stemcells.2007-1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270(5639):725–727

    Article  CAS  Google Scholar 

  10. Richler C, Yaffe D (1970) The in vitro cultivation and differentiation capacities of myogenic cell lines. Dev Biol 23(1):1–22

    Article  CAS  Google Scholar 

  11. Linkhart TA, Clegg CH, Hauschka SD (1981) Myogenic differentiation in permanent clonal mouse myoblast cell lines: regulation by macromolecular growth factors in the culture medium. Dev Biol 86(1):19–30

    Article  CAS  Google Scholar 

  12. Keire P, Shearer A, Shefer G, Yablonka-Reuveni Z (2013) Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods Mol Biol 946:431–468. https://doi.org/10.1007/978-1-62,703-128-8_28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191(2):270–283. https://doi.org/10.1006/dbio.1997.8721

    Article  CAS  PubMed  Google Scholar 

  14. Olguin HC, Olwin BB (2004) Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275(2):375–388. https://doi.org/10.1016/j.ydbio.2004.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067. https://doi.org/10.1126/science.1114758

    Article  CAS  PubMed  Google Scholar 

  16. Loro E, Rinaldi F, Malena A, Masiero E, Novelli G, Angelini C, Romeo V, Sandri M, Botta A, Vergani L (2010) Normal myogenesis and increased apoptosis in myotonic dystrophy type-1 muscle cells. Cell Death Diff 17(8):1315–1324

    Article  CAS  Google Scholar 

  17. Yablonka-Reuveni Z, Anderson JE (2006) Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Dev Dynam 235(1):203–212

    Article  CAS  Google Scholar 

  18. Hogan KA, Cho DS, Arneson PC, Samani A, Palines P, Yang Y, Doles JD (2017) Tumor-derived cytokines impair myogenesis and alter the skeletal muscle immune microenvironment. Cytokine. https://doi.org/10.1016/j.cyto.2017.11.006

  19. Agley CC, Velloso CP, Lazarus NR, Harridge SD (2012) An image analysis method for the precise selection and quantitation of fluorescently labeled cellular constituents: application to the measurement of human muscle cells in culture. J Histochem Cytochem 60(6):428–438

    Article  CAS  Google Scholar 

  20. Desgeorges T, Liot S, Lyon S, Bouviere J, Kemmel A, Trignol A, Rousseau D, Chapuis B, Gondin J, Mounier R (2019) Open-CSAM, a new tool for semi-automated analysis of myofiber cross-sectional area in regenerating adult skeletal muscle. Skeletal Muscle 9(1):2

    Article  Google Scholar 

  21. Wen Y, Murach KA, Vechetti IJ Jr, Fry CS, Vickery C, Peterson CA, McCarthy JJ, Campbell KS (2018) MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry. J Appl Physiol (1985) 124(1):40–51. https://doi.org/10.1152/japplphysiol.00762.2017

    Article  CAS  Google Scholar 

  22. Murphy DP, Nicholson T, Jones SW, O’Leary MF (2019) MyoCount: a software tool for the automated quantification of myotube surface area and nuclear fusion index. Wellcome Open Res 4

    Google Scholar 

  23. Langen RC, Van Der Velden JL, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM (2004) Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization. FASEB J 18(2):227–237

    Article  CAS  Google Scholar 

  24. Miller S, Ito H, Blau H, Torti F (1988) Tumor necrosis factor inhibits human myogenesis in vitro. Mol Cell Biol 8(6):2295–2301

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason D. Doles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arneson-Wissink, P.C., Doles, J.D. (2022). Quantification of Muscle Stem Cell Differentiation Using Live-Cell Imaging and Eccentricity Measures. In: Kannan, N., Beer, P. (eds) Stem Cell Assays. Methods in Molecular Biology, vol 2429. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1979-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1979-7_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1978-0

  • Online ISBN: 978-1-0716-1979-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics