Dittrich W, Göhde W (1969) Impulsfluorimetrie bei Einzelzellen in Suspensionen. Z Naturf 24b:360–361
Google Scholar
Brown M, Wittwer C (2000) Flow cytometry: principles and clinical applications in hematology. Clin Chem 46(8):1221–1229. https://doi.org/10.1093/clinchem/46.8.1221
CAS
CrossRef
PubMed
Google Scholar
Rieseberg M, Kasper C, Reardon KF, Scheper T (2001) Flow cytometry in biotechnology. Appl Microbiol Biotechnol 56(3–4):350–360. https://doi.org/10.1007/s002530100673
CAS
CrossRef
PubMed
Google Scholar
Chow S, Hedley D (2001) Flow cytometric measurement of intracellular pH. Curr Protoc Cytom. Chapter 9:Unit 9 3. https://doi.org/10.1002/0471142956.cy0903s14
Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594:57–72. https://doi.org/10.1007/978-1-60761-411-1_4
CAS
CrossRef
PubMed
Google Scholar
Hedley DW, Chow S (1994) Evaluation of methods for measuring cellular glutathione content using flow cytometry. Cytometry 15(4):349–358. https://doi.org/10.1002/cyto.990150411
CAS
CrossRef
PubMed
Google Scholar
June CH, Abe R, Rabinovitch PS (1997) Measurement of intracellular calcium ions by flow cytometry. Curr Protoc Cytom. Chapter 9:Unit 9 8. https://doi.org/10.1002/0471142956.cy0908s02
Pozarowski P, Darzynkiewicz Z (2004) Analysis of cell cycle by flow cytometry. Methods Mol Biol 281:301–311. https://doi.org/10.1385/1-59259-811-0:301
CAS
CrossRef
PubMed
Google Scholar
Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1(3):1458–1461. https://doi.org/10.1038/nprot.2006.238
CAS
CrossRef
PubMed
Google Scholar
Shapiro HM (2000) Membrane potential estimation by flow cytometry. Methods 21(3):271–279. https://doi.org/10.1006/meth.2000.1007
CAS
CrossRef
PubMed
Google Scholar
Vermes I, Haanen C, Reutelingsperger C (2000) Flow cytometry of apoptotic cell death. J Immunol Methods 243(1–2):167–190. https://doi.org/10.1016/S0022-1759(00)00233-7
CAS
CrossRef
PubMed
Google Scholar
Hansmeier N, Miskiewicz K, Elpers L, Liss V, Hensel M, Sterzenbach T (2017) Functional expression of the entire adhesiome of Salmonella enterica serotype Typhimurium. Sci Rep 7(1):10326. https://doi.org/10.1038/s41598-017-10598-2
Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry. Appl Environ Microbiol 73(10):3283–3290. https://doi.org/10.1128/AEM.02750-06
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Sasaki DT, Dumas SE, Engleman EG (1987) Discrimination of viable and non-viable cells using propidium iodide in two color immunofluorescence. Cytometry 8(4):413–420. https://doi.org/10.1002/cyto.990080411
CAS
CrossRef
PubMed
Google Scholar
Stapels DAC, Hill PWS, Westermann AJ, Fisher RA, Thurston TL, Saliba AE, Blommestein I, Vogel J, Helaine S (2018) Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 362 (6419):1156–1160. https://doi.org/10.1126/science.aat7148
Röder J, Hensel M (2020) Presence of SopE and mode of infection result in increased Salmonella-containing vacuole damage and cytosolic release during host cell infection by Salmonella enterica. Cell Microbiol 22(5):e13155. https://doi.org/cmi.13155/cmi.13155
Google Scholar
Helaine S, Thompson JA, Watson KG, Liu M, Boyle C, Holden DW (2010) Dynamics of intracellular bacterial replication at the single cell level. Proc Natl Acad Sci U S A 107(8):3746–3751. https://doi.org/10.1073/pnas.1000041107
CrossRef
PubMed
PubMed Central
Google Scholar
Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343(6167):204–204. https://doi.org/10.1126/science.1244705
Schulte M, Olschewski K, Hensel M (2021) The protected physiological state of intracellular Salmonella enterica persisters reduces host cell-imposed stress. Commun Biol 4(1):520. https://doi.org/10.1038/s42003-021-02049-6
Noster J, Chao TC, Sander N, Schulte M, Reuter T, Hansmeier N, Hensel M (2019) Proteomics of intracellular Salmonella enterica reveals roles of Salmonella pathogenicity island 2 in metabolism and antioxidant defense. PLoS Pathog 15(4):e1007741. https://doi.org/10.1371/journal.ppat.1007741
Galeev A, Suwandi A, Bakker H, Oktiviyari A, Routier FH, Krone L, Hensel M, Grassl GA (2020) Proteoglycan-dependent endo-lysosomal fusion affects intracellular survival of Salmonella Typhimurium in epithelial cells. Front Immunol 11: 731. https://doi.org/10.3389/fimmu.2020.00731
Schulte M, Olschewski K, Hensel M (2021) Fluorescent protein-based reporters reveal stress response of intracellular Salmonella enterica at level of single bacterial cells. Cell Microbiol 23(3):e13293. https://doi.org/10.1111/cmi.13293
Reuter T, Scharte F, Franzkoch R, Liss V, Hensel M (2021). Single cell analyses reveal distinct adaptation of typhoidal and non-typhoidal Salmonella enterica serovars to intracellular lifestyle. PLoS Pathog 17: e1009319. https://doi.org/10.1371/journal.ppat.1009319
Röder J, Felgner P, Hensel M (2021) Single cell analyses reveal phosphate availability as critical factor for nutrition of Salmonella enterica within mammalian host cells. Cell Microbiol: e13374. https://doi.org/10.1111/cmi.13374
Röder J, Felgner P, Hensel M (2021) Comprehensive single cell analyses of the nutritional environment of intracellular Salmonella enterica. Front Cell Infect Microbiol 11:624650. https://doi.org/10.3389/fcimb.2021.624650