Asselah T, Durantel D, Pasmant E et al (2021) COVID-19: discovery, diagnostics and drug development. J Hepatol 74:168–184
CAS
PubMed
Google Scholar
Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR et al (2012) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214
Google Scholar
Mahlich J, Bartol A, Dheban S (2021) Can adaptive clinical trials help to solve the productivity crisis of the pharmaceutical industry? – a scenario analysis. Health Econ Rev 11:4
PubMed
PubMed Central
Google Scholar
Taboureau O, El M’Selmi W, Audouze K (2020) Integrative systems toxicology to predict human biological systems affected by exposure to environmental chemicals. Toxicol Appl Pharmacol 405:115210
CAS
PubMed
Google Scholar
Aguayo-Orozco A, Audouze K, Brunak S, Taboureau O (2016) In silico systems pharmacology to assess drug’s therapeutic and toxic effects. Curr Pharm Des 22:6895–6902
CAS
PubMed
Google Scholar
Wu Q, Taboureau O, Audouze K (2020) Development of an adverse drug event network to predict drug toxicity. Curr Res Tox 1:48–55
Google Scholar
Wilson JL, Wong M, Chalke A, Stepanov N, Petkovic D, Altman RB (2019) PathFXweb: a web application for identifying drug safety and efficacy phenotypes. Bioinformatics 35:4504–4506
CAS
PubMed
PubMed Central
Google Scholar
Yilmaz S, Jonveaux P, Bicep C, Pierron L, Smail-Tabbone M et al (2009) Gene-disease relationship discovery based on model-driven data integration and database view definition. Bioinformatics 25:230–236
CAS
PubMed
Google Scholar
Stathias V, Koleti A, Vidovic D, Cooper DJ, Jagodnik KM et al (2018) Sustainable data and metadata management at the BD2K-LINCS data coordination and integration center. Sci Data 5:180117
PubMed
PubMed Central
Google Scholar
Igarashi Y, Nakatsu N, Yamashita T, Ono A, Ohno Y, Urushidani T, Yamada H (2015) Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids Res 43:D921–D927
CAS
PubMed
Google Scholar
Ganter B, Tugendreich S, Pearson CI, Ayanoglu E, Baumhueter S, Bostian KA et al (2005) Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol 119:219–244
CAS
PubMed
Google Scholar
Darde TA, Gaudriault P, Beranger R, Lancien C, Caillarec-Joly A et al (2018) TOXsIgN: a cross-species repository for toxicogenomic signatures. Bioinformatics 34:2116–2122
CAS
PubMed
Google Scholar
Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL et al (2017) The comparative Toxicogenomics database: update 2017. Nucleic Acids Res 45:D972–D978
CAS
PubMed
Google Scholar
Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K et al (2017) The CompTox chemistry dashboard: a community data resource for environmental chemistry. J Cheminform 9:61
PubMed
PubMed Central
Google Scholar
Bray M-A, Singh S, Han H, Davis CT, Borgeson B et al (2016) Cell painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat Protocol 11:1757–1774
CAS
Google Scholar
Plunkett LM, Kaplan LM, Becker RA (2015) Challenges in using the ToxRefDB as a resource for toxicity prediction modeling. Regul Toxicol Pharmacol 72:610–614
CAS
PubMed
Google Scholar
Lea IA, Gong H, Paleja A, Rashid A, Fostel J (2017) CEBS: a comprehensive annotated database of toxicological data. Nucleic Acids Res 45:D964–D971
CAS
PubMed
Google Scholar
Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6:343
PubMed
PubMed Central
Google Scholar
Xu R, Wang Q (2014) Large-scale combining signals from both biomedical literature and the FDA adverse event reporting system (FAERS) to improve post-marketing drug safety signal detection. BMC Bioinformatics 15:15–17
Google Scholar
Rao M, Van Vleet TR, Ciurlionis R, Buck WR, Mittelstadt SW et al (2019) Comparison of RNA-Seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies. Front Genet 9:638
Google Scholar
Buck WR, Waring JF, Blomme EA (2008) Use of traditional end points and gene dysregulation to understand mechanism of toxicity: toxicogrnomics in mechanistic toxicology. Methods Mol Biol 460:23–44
CAS
PubMed
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:80
Google Scholar
Shakya K, Ruskin HJ, Kerr G, Crane M, Becker J (2010) Comparison of microarray preprocessing methods. Adv Exp Med Biol 680:139–147
CAS
PubMed
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21
CAS
PubMed
Google Scholar
Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26:493–500
PubMed
Google Scholar
Robinson M, McCarthy D, Smyth G (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140
CAS
PubMed
Google Scholar
Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to. Multiple testing. J R Stat Soc Ser B 57:289–300
Google Scholar
Andrews TS, Hemberg M (2019) M3Drop: dropout-based feature selection for scRNASeq. Bioinformatics 35:2865–2867
CAS
PubMed
Google Scholar
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies and species. Nat Biotechnol 36:411–420
CAS
PubMed
PubMed Central
Google Scholar
Finak G, McDavid A, Yajima M, Deng J, Gersuk V et al (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16:278
PubMed
PubMed Central
Google Scholar
Andrews TS, Kiselev VY, McCarthy D, Hemberg M (2021) Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc 16:1–9
CAS
PubMed
Google Scholar
Srivatsan SR, McFaline-Figueroa JL, Ramani V, Saunders L, Cao J et al (2020) Massively multiplex chemical transcriptomics at single-cell resolution. Science 367:45–51
CAS
PubMed
Google Scholar
da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550
CAS
PubMed
PubMed Central
Google Scholar
Kiyosawa N, Ando Y, Manabe S, Yamoto T (2009) Toxicogenomics biomarkers for liver toxicity. J Toxicol Pathol 22:35–52
CAS
PubMed
PubMed Central
Google Scholar
Zolotareva O, Kleine M (2019) A survey of prioritization tools for mendelian and complex human diseases. J Integr Bioinform 16:20180068
Google Scholar
Hernandez-de-Diego R, Tarazona S, Martinez-Mira C, Balzano-Nogueira L, Furio-Tari P et al (2018) PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res 46:W503–W509
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:17
Google Scholar
Ivliev AE, Hoen PAC, Borisevich D, Nikolsky Y, Sergeeva G (2016) Drug repositioning through systematic mining of gene coexpression networks in cancer. PLoS One 11:e0165059
PubMed
PubMed Central
Google Scholar
Sutherland JJ, Webster YW, Willy JA et al (2018) Toxicogenomic module associations with pathogenesis: a network-based approach to understanding drug toxicity. Pharmacogenomics J 18:377–390
CAS
PubMed
Google Scholar
Copple IM, den Hollander W, Callegaro G et al (2019) Characterisation of the NRF2 transcriptional network and its response to chemical insult in primary human hepatocytes: implications for prediction of drug-induced liver injury. Arch Toxicol 93:385–399
CAS
PubMed
Google Scholar
Pei G, Chen L, Zhang W (2017) WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol 585:135–158
CAS
PubMed
Google Scholar
Nueda MJ, Tarazona S, Conesa A (2014) Next maSigPro: updating maSigPro Bioconductor package for RNA-seq time series. Bioinformatics 30:2598–2602
CAS
PubMed
PubMed Central
Google Scholar
Serra A, Fratello M, Del Giudice G, Saarimäki LA, Paci M et al (2020) TinderMIX: time-dose integrated modelling of toxicogenomics data. Gigascience 9:giaa055
PubMed
PubMed Central
Google Scholar
Aguayo-Orozco A, Bios FY, Brunak S, Taboureau O (2018) Analysis of time-series gene expression data to explore mechanisms of chemical-induced hepatic steatosis toxicity. Front Gene 9:396
Google Scholar
Yang L, Allen BC, Thomas RS (2007) BMDExpress: a software tool for the benchmark dose analyses of genomic data. BMC Genomics 8:387
PubMed
PubMed Central
Google Scholar
Phillips JR, Svoboda DL, Tandon A, Patel S, Sedykh A et al (2019) BMDExpress 2: enhanced transcriptomic dose-response analysis workflow. Bioinformatics 35:1780–1782
CAS
PubMed
Google Scholar
Vermeulen R, Schymanski EL, Barabasi AL, Miller GW (2020) The exposome and health: where chemistry meets biology. Science 367:392–396
CAS
PubMed
PubMed Central
Google Scholar
Audouze K, Juncker AS, Roque FJ, Krysiak-Baltyn K, Weinhold N et al (2010) Deciphering diseases and biological targets for environmental chemicals using toxicogenomics networks. PLoS Comput Biol 6:e1000788
PubMed
PubMed Central
Google Scholar
Dafniet B, Cerisier N, Audouze K, Taboureau O (2020) Drug-target-ADR network and possible implications of structural variants in adverse events. Mol Inform 39:e2000116
PubMed
Google Scholar
Aguayo-Orozco A, Audouze K, Siggaard T, Barouki R, Brunak S et al (2019) sAOP: linking chemical stressors to adverse outcomes pathway networks. Bioinformatics 35:5391–5392
CAS
PubMed
Google Scholar
Carvaillo JC, Barouki R, Coumoul X, Audouze K (2019) Linking bisphenol S to adverse outcome pathways using a combined text mining and systems biology approach. Environ Health Perspect 127:47005
PubMed
Google Scholar
Jornod F, Rugard M, Tamisier L, Coumoul X, Andersen HR, Barouki R, Audouze K (2020) AOP4EUpest: mapping of pesticides in adverse outcome pathways using a text mining tool. Bioinformatics 36:4379–4381
CAS
PubMed
PubMed Central
Google Scholar
Rugard M, Coumoul X, Carvaillo JC, Barouki R, Audouze K (2020) Deciphering adverse outcome pathway network linked to bisphenol F using text mining and systems toxicology approaches. Toxicol Sci 173:32–40
PubMed
Google Scholar
Jensen PB, Jensen LL, Brunak S (2012) Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 13:395–405
CAS
PubMed
Google Scholar
Canada A, Capella-Gutierrez S, Rabal O, Oyarzabal J, Valencia A, Krallinger M (2017) LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes. Nucleic Acids Res 45:W484–W489
CAS
PubMed
PubMed Central
Google Scholar
Suter L, Schroeder S, Meyer K, Gautier JC, Amberg A et al (2011) EU framework 6 project: predictive toxicology (PredTox) – overview and outcome. Toxicol Appl Pharmacol 252:73–84
CAS
PubMed
Google Scholar
Méndez-Lucio O, Baillif B, Clevert DA, Rouquié D, Wichard J (2020) De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat Commun 11:10
PubMed
PubMed Central
Google Scholar