Skip to main content

Emerging Bioinformatics Methods and Resources in Drug Toxicology

Part of the Methods in Molecular Biology book series (MIMB,volume 2425)

Abstract

Assessing the drug safety at an early stage of a drug discovery program is a critical issue. With the recent advances in molecular biology and genomic, massive amounts of generated and accumulated data by advanced experimental technologies such as RNA sequencing or proteomics start to be at the disposal of the scientific community. Innovative and adequate bioinformatic methods, tools, and protocols are required to analyze properly these diverse and extensive data sources with the aim to identify key features that are related to toxicity observations. Furthermore, the assessment of drug safety can be performed across multiple scales of complexity from molecular, cellular to phenotypic levels; therefore, the application of network science contributes to a better interpretation of the drug’s exposure effect on human health. Here, we review databases containing toxicogenomics and chemical-phenotype information, as well as appropriated bioinformatics approaches that are currently used to analyze such data. Extension to others methods such as dose–responses, time-dependent processes, and text mining is also presented giving an overview of suitable tools available for a best practice of drug safety analysis.

Key words

  • Drug safety
  • Bioinformatics
  • Network biology
  • RNA sequencing
  • Toxicology
  • Text mining

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1960-5_6
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1960-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Asselah T, Durantel D, Pasmant E et al (2021) COVID-19: discovery, diagnostics and drug development. J Hepatol 74:168–184

    CAS  PubMed  Google Scholar 

  2. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR et al (2012) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214

    Google Scholar 

  3. Mahlich J, Bartol A, Dheban S (2021) Can adaptive clinical trials help to solve the productivity crisis of the pharmaceutical industry? – a scenario analysis. Health Econ Rev 11:4

    PubMed  PubMed Central  Google Scholar 

  4. Taboureau O, El M’Selmi W, Audouze K (2020) Integrative systems toxicology to predict human biological systems affected by exposure to environmental chemicals. Toxicol Appl Pharmacol 405:115210

    CAS  PubMed  Google Scholar 

  5. Aguayo-Orozco A, Audouze K, Brunak S, Taboureau O (2016) In silico systems pharmacology to assess drug’s therapeutic and toxic effects. Curr Pharm Des 22:6895–6902

    CAS  PubMed  Google Scholar 

  6. Wu Q, Taboureau O, Audouze K (2020) Development of an adverse drug event network to predict drug toxicity. Curr Res Tox 1:48–55

    Google Scholar 

  7. Wilson JL, Wong M, Chalke A, Stepanov N, Petkovic D, Altman RB (2019) PathFXweb: a web application for identifying drug safety and efficacy phenotypes. Bioinformatics 35:4504–4506

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yilmaz S, Jonveaux P, Bicep C, Pierron L, Smail-Tabbone M et al (2009) Gene-disease relationship discovery based on model-driven data integration and database view definition. Bioinformatics 25:230–236

    CAS  PubMed  Google Scholar 

  9. Stathias V, Koleti A, Vidovic D, Cooper DJ, Jagodnik KM et al (2018) Sustainable data and metadata management at the BD2K-LINCS data coordination and integration center. Sci Data 5:180117

    PubMed  PubMed Central  Google Scholar 

  10. Igarashi Y, Nakatsu N, Yamashita T, Ono A, Ohno Y, Urushidani T, Yamada H (2015) Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids Res 43:D921–D927

    CAS  PubMed  Google Scholar 

  11. Ganter B, Tugendreich S, Pearson CI, Ayanoglu E, Baumhueter S, Bostian KA et al (2005) Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol 119:219–244

    CAS  PubMed  Google Scholar 

  12. Darde TA, Gaudriault P, Beranger R, Lancien C, Caillarec-Joly A et al (2018) TOXsIgN: a cross-species repository for toxicogenomic signatures. Bioinformatics 34:2116–2122

    CAS  PubMed  Google Scholar 

  13. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL et al (2017) The comparative Toxicogenomics database: update 2017. Nucleic Acids Res 45:D972–D978

    CAS  PubMed  Google Scholar 

  14. Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K et al (2017) The CompTox chemistry dashboard: a community data resource for environmental chemistry. J Cheminform 9:61

    PubMed  PubMed Central  Google Scholar 

  15. Bray M-A, Singh S, Han H, Davis CT, Borgeson B et al (2016) Cell painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat Protocol 11:1757–1774

    CAS  Google Scholar 

  16. Plunkett LM, Kaplan LM, Becker RA (2015) Challenges in using the ToxRefDB as a resource for toxicity prediction modeling. Regul Toxicol Pharmacol 72:610–614

    CAS  PubMed  Google Scholar 

  17. Lea IA, Gong H, Paleja A, Rashid A, Fostel J (2017) CEBS: a comprehensive annotated database of toxicological data. Nucleic Acids Res 45:D964–D971

    CAS  PubMed  Google Scholar 

  18. Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6:343

    PubMed  PubMed Central  Google Scholar 

  19. Xu R, Wang Q (2014) Large-scale combining signals from both biomedical literature and the FDA adverse event reporting system (FAERS) to improve post-marketing drug safety signal detection. BMC Bioinformatics 15:15–17

    Google Scholar 

  20. Rao M, Van Vleet TR, Ciurlionis R, Buck WR, Mittelstadt SW et al (2019) Comparison of RNA-Seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies. Front Genet 9:638

    Google Scholar 

  21. Buck WR, Waring JF, Blomme EA (2008) Use of traditional end points and gene dysregulation to understand mechanism of toxicity: toxicogrnomics in mechanistic toxicology. Methods Mol Biol 460:23–44

    CAS  PubMed  Google Scholar 

  22. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:80

    Google Scholar 

  23. Shakya K, Ruskin HJ, Kerr G, Crane M, Becker J (2010) Comparison of microarray preprocessing methods. Adv Exp Med Biol 680:139–147

    CAS  PubMed  Google Scholar 

  24. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    PubMed  PubMed Central  Google Scholar 

  25. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    CAS  PubMed  Google Scholar 

  26. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26:493–500

    PubMed  Google Scholar 

  27. Robinson M, McCarthy D, Smyth G (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    CAS  PubMed  Google Scholar 

  28. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    PubMed  PubMed Central  Google Scholar 

  29. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  30. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to. Multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  31. Andrews TS, Hemberg M (2019) M3Drop: dropout-based feature selection for scRNASeq. Bioinformatics 35:2865–2867

    CAS  PubMed  Google Scholar 

  32. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies and species. Nat Biotechnol 36:411–420

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Finak G, McDavid A, Yajima M, Deng J, Gersuk V et al (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16:278

    PubMed  PubMed Central  Google Scholar 

  34. Andrews TS, Kiselev VY, McCarthy D, Hemberg M (2021) Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc 16:1–9

    CAS  PubMed  Google Scholar 

  35. Srivatsan SR, McFaline-Figueroa JL, Ramani V, Saunders L, Cao J et al (2020) Massively multiplex chemical transcriptomics at single-cell resolution. Science 367:45–51

    CAS  PubMed  Google Scholar 

  36. da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Google Scholar 

  37. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiyosawa N, Ando Y, Manabe S, Yamoto T (2009) Toxicogenomics biomarkers for liver toxicity. J Toxicol Pathol 22:35–52

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zolotareva O, Kleine M (2019) A survey of prioritization tools for mendelian and complex human diseases. J Integr Bioinform 16:20180068

    Google Scholar 

  40. Hernandez-de-Diego R, Tarazona S, Martinez-Mira C, Balzano-Nogueira L, Furio-Tari P et al (2018) PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res 46:W503–W509

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:17

    Google Scholar 

  43. Ivliev AE, Hoen PAC, Borisevich D, Nikolsky Y, Sergeeva G (2016) Drug repositioning through systematic mining of gene coexpression networks in cancer. PLoS One 11:e0165059

    PubMed  PubMed Central  Google Scholar 

  44. Sutherland JJ, Webster YW, Willy JA et al (2018) Toxicogenomic module associations with pathogenesis: a network-based approach to understanding drug toxicity. Pharmacogenomics J 18:377–390

    CAS  PubMed  Google Scholar 

  45. Copple IM, den Hollander W, Callegaro G et al (2019) Characterisation of the NRF2 transcriptional network and its response to chemical insult in primary human hepatocytes: implications for prediction of drug-induced liver injury. Arch Toxicol 93:385–399

    CAS  PubMed  Google Scholar 

  46. Pei G, Chen L, Zhang W (2017) WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol 585:135–158

    CAS  PubMed  Google Scholar 

  47. Nueda MJ, Tarazona S, Conesa A (2014) Next maSigPro: updating maSigPro Bioconductor package for RNA-seq time series. Bioinformatics 30:2598–2602

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Serra A, Fratello M, Del Giudice G, Saarimäki LA, Paci M et al (2020) TinderMIX: time-dose integrated modelling of toxicogenomics data. Gigascience 9:giaa055

    PubMed  PubMed Central  Google Scholar 

  49. Aguayo-Orozco A, Bios FY, Brunak S, Taboureau O (2018) Analysis of time-series gene expression data to explore mechanisms of chemical-induced hepatic steatosis toxicity. Front Gene 9:396

    Google Scholar 

  50. Yang L, Allen BC, Thomas RS (2007) BMDExpress: a software tool for the benchmark dose analyses of genomic data. BMC Genomics 8:387

    PubMed  PubMed Central  Google Scholar 

  51. Phillips JR, Svoboda DL, Tandon A, Patel S, Sedykh A et al (2019) BMDExpress 2: enhanced transcriptomic dose-response analysis workflow. Bioinformatics 35:1780–1782

    CAS  PubMed  Google Scholar 

  52. Vermeulen R, Schymanski EL, Barabasi AL, Miller GW (2020) The exposome and health: where chemistry meets biology. Science 367:392–396

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Audouze K, Juncker AS, Roque FJ, Krysiak-Baltyn K, Weinhold N et al (2010) Deciphering diseases and biological targets for environmental chemicals using toxicogenomics networks. PLoS Comput Biol 6:e1000788

    PubMed  PubMed Central  Google Scholar 

  54. Dafniet B, Cerisier N, Audouze K, Taboureau O (2020) Drug-target-ADR network and possible implications of structural variants in adverse events. Mol Inform 39:e2000116

    PubMed  Google Scholar 

  55. Aguayo-Orozco A, Audouze K, Siggaard T, Barouki R, Brunak S et al (2019) sAOP: linking chemical stressors to adverse outcomes pathway networks. Bioinformatics 35:5391–5392

    CAS  PubMed  Google Scholar 

  56. Carvaillo JC, Barouki R, Coumoul X, Audouze K (2019) Linking bisphenol S to adverse outcome pathways using a combined text mining and systems biology approach. Environ Health Perspect 127:47005

    PubMed  Google Scholar 

  57. Jornod F, Rugard M, Tamisier L, Coumoul X, Andersen HR, Barouki R, Audouze K (2020) AOP4EUpest: mapping of pesticides in adverse outcome pathways using a text mining tool. Bioinformatics 36:4379–4381

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rugard M, Coumoul X, Carvaillo JC, Barouki R, Audouze K (2020) Deciphering adverse outcome pathway network linked to bisphenol F using text mining and systems toxicology approaches. Toxicol Sci 173:32–40

    PubMed  Google Scholar 

  59. Jensen PB, Jensen LL, Brunak S (2012) Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 13:395–405

    CAS  PubMed  Google Scholar 

  60. Canada A, Capella-Gutierrez S, Rabal O, Oyarzabal J, Valencia A, Krallinger M (2017) LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes. Nucleic Acids Res 45:W484–W489

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Suter L, Schroeder S, Meyer K, Gautier JC, Amberg A et al (2011) EU framework 6 project: predictive toxicology (PredTox) – overview and outcome. Toxicol Appl Pharmacol 252:73–84

    CAS  PubMed  Google Scholar 

  62. Méndez-Lucio O, Baillif B, Clevert DA, Rouquié D, Wichard J (2020) De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat Commun 11:10

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Paris and INSERM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Taboureau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Audouze, K., Taboureau, O. (2022). Emerging Bioinformatics Methods and Resources in Drug Toxicology. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 2425. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1960-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1960-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1959-9

  • Online ISBN: 978-1-0716-1960-5

  • eBook Packages: Springer Protocols