Skip to main content

Engineering IgG1 Fc Domains That Activate the Complement System

  • Protocol
  • First Online:
Immune Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2421))

Abstract

Fc-mediated effector functions are important for the clearance of pathologic cells by therapeutic IgG antibodies through two mechanisms: via the activation of the classical complement pathway and through the binding to Fcγ receptors (FcγRs) which mediate clearance of targeted cells by antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) by effector cells such as macrophages, NK cells, and other leukocytes subsets. Complement activation results in direct cell killing through the formation of the membrane attack complex (MAC, complement-dependent cytotoxicity or CDC) and in the deposition of complement opsonins on pathogen surfaces. The latter are recognized by complement receptors on effector cells in turn triggering complement-dependent cell cytotoxicity and phagocytosis (CDCC and CDCP, respectively). Little is known about the role of CDCC and CDCP on therapeutic antibody function because on the one hand, IgG isotype antibodies bind to both FcγR and C1q to activate the complement pathway, and on the other, immune cells express complement receptor as well as FcγRs. We engineered IgG1 Fc domains that bind with high affinity to C1q but have very little or no binding to FcγR. To this end, we employed display of IgG in E. coli (which lack protein glycosylation machinery) for the screening of very large libraries (>2 × 109) of randomly mutated human Fc domains to isolate Fc variants that bind to C1q. Herein we introduce and describe the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nimmerjahn F, Ravetch JV (2008) Fcγ receptors as regulators of immune responses. Nat Rev Immunol 8:34–47. https://doi.org/10.1038/nri2206

    Article  CAS  PubMed  Google Scholar 

  2. Bakema JE, van Egmond M (2014) Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer. In: Daeron M, Nimmerjahn F (eds) Fc receptors. Springer International Publishing, Cham, pp 373–392

    Chapter  Google Scholar 

  3. Ackerman M, Nimmerjahn F (2013) Antibody Fc:: linking adaptive and innate immunity. Academic, New York

    Google Scholar 

  4. Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066. https://doi.org/10.1056/NEJM200104053441406

    Article  CAS  PubMed  Google Scholar 

  5. Atkinson JP, Frank MM (1974) Complement-independent clearance of IgG-sensitized erythrocytes: inhibition by cortisone. Blood 44:629–637

    Article  CAS  Google Scholar 

  6. Carroll MC (1998) The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 16:545–568. https://doi.org/10.1146/annurev.immunol.16.1.545

    Article  CAS  PubMed  Google Scholar 

  7. Beum PV, Lindorfer MA, Hall BE et al (2006) Quantitative analysis of protein co-localization on B cells opsonized with rituximab and complement using the ImageStream multispectral imaging flow cytometer. J Immunol Methods 317:90–99. https://doi.org/10.1016/j.jim.2006.09.012

    Article  CAS  PubMed  Google Scholar 

  8. Dunkelberger JR, Song W-C (2009) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–50. https://doi.org/10.1038/cr.2009.139

    Article  CAS  PubMed  Google Scholar 

  9. Atkinson JP, Frank MM (1974) Studies on the in vivo effects of antibody. Interaction of IgM antibody and complement in the immune clearance and destruction of erythrocytes in man. J Clin Invest 54:339–348. https://doi.org/10.1172/JCI107769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramos OF, Sármay G, Klein E et al (1985) Complement-dependent cellular cytotoxicity: lymphoblastoid lines that activate complement component 3 (C3) and express C3 receptors have increased sensitivity to lymphocyte-mediated lysis in the presence of fresh human serum. Proc Natl Acad Sci U S A 82:5470–5474

    Article  CAS  Google Scholar 

  11. Lee C-H, Romain G, Yan W et al (2017) IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions. Nat Immunol 18:889–898. https://doi.org/10.1038/ni.3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ehlenberger AG, Nussenzweig V (1977) The role of membrane receptors for C3b and C3d in phagocytosis. J Exp Med 145:357–371

    Article  CAS  Google Scholar 

  13. Giodini A, Rahner C, Cresswell P (2009) Receptor-mediated phagocytosis elicits cross-presentation in nonprofessional antigen-presenting cells. Proc Natl Acad Sci U S A 106:3324–3329. https://doi.org/10.1073/pnas.0813305106

    Article  PubMed  PubMed Central  Google Scholar 

  14. Duncan AR, Winter G (1988) The binding site for C1q on IgG. Nature 332:738–740. https://doi.org/10.1038/332738a0

    Article  CAS  PubMed  Google Scholar 

  15. Gaboriaud C, Juanhuix J, Gruez A et al (2003) The crystal structure of the globular head of complement protein C1q provides a basis for its versatile recognition properties. J Biol Chem 278:46974–46982. https://doi.org/10.1074/jbc.M307764200

    Article  CAS  PubMed  Google Scholar 

  16. Borrok MJ, Jung ST, Kang TH et al (2012) Revisiting the role of glycosylation in the structure of human IgG Fc. ACS Chem Biol 7:1596–1602. https://doi.org/10.1021/cb300130k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jung ST, Kang TH, Kelton W, Georgiou G (2011) Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr Opin Biotechnol 22:858–867. https://doi.org/10.1016/j.copbio.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  18. Jung ST, Kelton W, Kang TH et al (2012) Effective phagocytosis of low Her2 tumor cell lines with engineered, aglycosylated IgG displaying high FcγRIIa affinity and selectivity. ACS Chem Biol 8:368–375. https://doi.org/10.1021/cb300455f

    Article  CAS  PubMed  Google Scholar 

  19. Jung ST, Reddy ST, Kang TH et al (2010) Aglycosylated IgG variants expressed in bacteria that selectively bind FcγRI potentiate tumor cell killing by monocyte-dendritic cells. Proc Natl Acad Sci 107:604–609. https://doi.org/10.1073/pnas.0908590107

    Article  PubMed  Google Scholar 

  20. Sazinsky SL, Ott RG, Silver NW et al (2008) Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci U S A 105:20167–20172. https://doi.org/10.1073/pnas.0809257105

    Article  PubMed  PubMed Central  Google Scholar 

  21. Simmons LC, Reilly D, Klimowski L et al (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263:133–147

    Article  CAS  Google Scholar 

  22. Harvey BR, Georgiou G, Hayhurst A et al (2004) Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc Natl Acad Sci U S A 101:9193–9198. https://doi.org/10.1073/pnas.0400187101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bradley AJ, Brooks DE, Norris-Jones R, Devine DV (1999) C1q binding to liposomes is surface charge dependent and is inhibited by peptides consisting of residues 14–26 of the human C1qA chain in a sequence independent manner. Biochim Biophys Acta 1418:19–30. https://doi.org/10.1016/S0005-2736(99)00013-9

    Article  CAS  PubMed  Google Scholar 

  24. Fromant M, Blanquet S, Plateau P (1995) Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal Biochem 224:347–353. https://doi.org/10.1006/abio.1995.1050

    Article  CAS  PubMed  Google Scholar 

  25. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thank Prof. George Georgiou in UT at Austin for critical reading and commenting and this work was supported by Clayton foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Han Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, CH., Delidakis, G. (2022). Engineering IgG1 Fc Domains That Activate the Complement System. In: Rast, J., Buckley, K. (eds) Immune Receptors. Methods in Molecular Biology, vol 2421. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1944-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1944-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1943-8

  • Online ISBN: 978-1-0716-1944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics