Skip to main content

Whole-Genome Genotyping Using DNA Microarrays for Population Genetics

  • Protocol
  • First Online:
Estrogen Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2418))

Abstract

The field of population genetics has exploded in the last two decades following the sequencing of the human genome in 2001 (Green et al. Nature 526:29–31, 2015). Tools to measure genetic variation have matured significantly throughout this advancement in knowledge (Lenoir and Giannella. J Biomed Discov Collab 1:11, 2006; Marzancola et al. Methods Mol Biol 1368:161–178, 2016). In this chapter, the focus is on the laboratory methods developed to perform genome-wide genotyping utilizing DNA microarrays, which is one of the most commonly used molecular techniques to assess global genetic variation (Heller MJ, Annu Rev Biomed Eng 4:129-153, 2002). DNA microarrays allow for the interrogation of hundreds of thousands of SNPs (single nucleotide polymorphisms) at once utilizing array-based technology in conjunction with fluorescent molecular labels in a process referred to as genotyping (Marzancola et al. Methods Mol Biol 1368:161–178, 2016). Genotype data can be utilized to associate certain phenotypes in relation with specific genetic variants within a population in a process known as genome-wide association studies or GWAS (Charlesworth and Charlesworth. Heredity (Edinb) 118(1):2–9, 2017; Casillas and Barbadilla. Genetics 205(3):1003–1035, 2017). This experimental technique is a multiple-day process involving the combination of DNA extraction, amplification, fragmentation, binding, and staining (Illumina Infinium HTS Assay Protocol Guide, 2013). Many vendors supply platforms and products to assess global genetic variation using DNA microarrays (Illumina Infinium HTS Assay Protocol Guide, 2013). In this chapter, the focus is on the methods utilized to generate high-quality genotype data with the Illumina® Infinium Global Screening Array. Although data analysis and quality control are not the focus for this chapter, they are also briefly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Green ED, Watson JD, Collins FS (2015) Human genome project: twenty-five years of big biology. Nature 526(7571):29–31. https://doi.org/10.1038/526029a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437(7063):1299–1320. https://doi.org/10.1038/nature04226

    Article  CAS  Google Scholar 

  3. Lenoir T, Giannella E (2006) The emergence and diffusion of DNA microarray technology. J Biomed Discov Collab 1:11. https://doi.org/10.1186/1747-5333-1-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291(5507):1304–1351. https://doi.org/10.1126/science.1058040

    Article  CAS  PubMed  Google Scholar 

  5. Marzancola MG, Sedighi A, Li PC (2016) DNA microarray-based diagnostics. Methods Mol Biol 1368:161–178. https://doi.org/10.1007/978-1-4939-3136-1_12

    Article  CAS  PubMed  Google Scholar 

  6. Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153. https://doi.org/10.1146/annurev.bioeng.4.020702.153438

    Article  CAS  PubMed  Google Scholar 

  7. Institute NHGR Single nucleotide polymorphisms (SNPS). National Institutes of Health (2020) https://www.genome.gov/genetics-glossary/Single-Nucleotide-Polymorphisms

  8. Microarray kits for genotyping and epigenetic analysis. (2020) Illumina, Inc. https://www.illumina.com/products/by-type/microarray-kits.html

  9. Charlesworth B, Charlesworth D (2017) Population genetics from 1966 to 2016. Heredity (Edinb) 118(1):2–9. https://doi.org/10.1038/hdy.2016.55

    Article  CAS  Google Scholar 

  10. Marees AT, de Kluiver H, Stringer S et al (2018) A tutorial on conducting genome-wide association studies: quality control and statistical analysis. Int J Methods Psychiatr Res 27(2):e1608. https://doi.org/10.1002/mpr.1608

    Article  PubMed  PubMed Central  Google Scholar 

  11. Casillas S, Barbadilla A (2017) Molecular population genetics. Genetics 205(3):1003–1035. https://doi.org/10.1534/genetics.116.196493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Milne RL, Kuchenbaecker KB, Michailidou K et al (2017) Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet 49(12):1767–1778. https://doi.org/10.1038/ng.3785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Escala-Garcia M, Guo Q, Dörk T et al (2019) Genome-wide association study of germline variants and breast cancer-specific mortality. Br J Cancer 120(6):647–657. https://doi.org/10.1038/s41416-019-0393-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bahreini A, Levine K, Santana-Santos L et al (2016) Non-coding single nucleotide variants affecting estrogen receptor binding and activity. Genome Med 8(1):128. https://doi.org/10.1186/s13073-016-0382-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. QIAamp DNA Mini and Blood Mini Handbook (2016). 5th edn. QIAGEN, Online

    Google Scholar 

  16. Illumina (2013) Infinium HTS assay protocol guide. Illumina

    Google Scholar 

  17. Aslanzadeh J (2004) Preventing PCR amplification carryover contamination in a clinical laboratory. Ann Clin Lab Sci 34(4):389–396

    CAS  PubMed  Google Scholar 

  18. Trost B, Walker S, Haider SA et al (2019) Impact of DNA source on genetic variant detection from human whole-genome sequencing data. J Med Genet 56(12):809–817. https://doi.org/10.1136/jmedgenet-2019-106281

    Article  CAS  PubMed  Google Scholar 

  19. Nakayama Y, Yamaguchi H, Einaga N et al (2016) Pitfalls of DNA quantification using DNA-binding fluorescent dyes and suggested solutions. PLoS One 11(3):e0150528. https://doi.org/10.1371/journal.pone.0150528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matlock B (2015) Assessment of nucleic acid purity. Thermo Fisher Scientific, Wilmington, MA, USA

    Google Scholar 

  21. Shao W, Khin S, Kopp WC (2012) Characterization of effect of repeated freeze and thaw cycles on stability of genomic DNA using pulsed field gel electrophoresis. Biopreserv Biobank 10(1):4–11. https://doi.org/10.1089/bio.2011.0016

    Article  CAS  PubMed  Google Scholar 

  22. Infinium® Omni5–4 v1.2 BeadChip (2016). Illumina

    Google Scholar 

  23. Axiom Precision Medicine Diversity Research Array (2019) Online PDF. Thermo Fisher Scientific Inc, Wilmington, MA, USA

    Google Scholar 

  24. UK Biobank Axiom Array (2017) Online PDF. Thermo Fisher Scientific Inc, Wilmington, MA, USA

    Google Scholar 

  25. Axiom® myDesign Targeted Genotyping Array Plates. Online PDF. Affymetrix, Inc., Santa Clara, California

    Google Scholar 

  26. Agilent’s SurePrint G3 CGH+SNP Microarray Platform (2015) Online PDF. Agilent Technologies, Santa Clara, California

    Google Scholar 

  27. Oligonucleotide Array-Based CGH for Genomic DNA Analysis - Enzymatic Labeling (2019) Online PDF. Agilent Technologies, Santa Clara, California

    Google Scholar 

  28. Luo J, Schumacher M, Scherer A et al (2010) A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J 10(4):278–291. https://doi.org/10.1038/tpj.2010.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Optimized Staining Temperature for XStain Protocol (2006). vol 370–2006-030 11Dec06. Illumina®, Inc, Online

    Google Scholar 

  30. Illumina (2012) Analyzing standards and custom Infinium genotyping products training guide. Illumina, https://support.illumina.com/content/dam/illumina-support/courses/eval-inf-controls/story_html5.html

  31. Infinium® Genotyping Data Analysis (2014). vol 970–2007-005. Illumina®

    Google Scholar 

  32. Li Z, He J, Jiang J et al (2019) Impacts of SNP genotyping call rate and SNP genotyping error rate on imputation accuracy inHolsteincattle. Yi Chuan 41(7):644–652. https://doi.org/10.16288/j.yczz.18-319

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik A. Ehli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Van Asselt, A.J., Ehli, E.A. (2022). Whole-Genome Genotyping Using DNA Microarrays for Population Genetics. In: Eyster, K.M. (eds) Estrogen Receptors. Methods in Molecular Biology, vol 2418. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1920-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1920-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1919-3

  • Online ISBN: 978-1-0716-1920-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics