Skip to main content

Synaptosomes and Metamodulation of Receptors

  • Protocol
  • First Online:
Synaptic Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2417))

Abstract

Synaptosomes are re-sealed pinched off nerve terminals that maintain all the main structural and functional features of the original structures and that are appropriate to study presynaptic events. Because of the discovery of new structural and molecular events that dictate the efficiency of transmitter release and of its receptor-mediated control in the central nervous system, the interest in this tissue preparation is continuously renewing. Most of these events have been already discussed in previous reviews, but few of them were not and deserve some comments since they could suggest new functional and possibly therapeutic considerations. Among them, the “metamodulation” of receptors represents an emerging aspect that dramatically increased the complexity of the presynaptic compartment, adding new insights to the role of presynaptic receptors as modulators of chemical synapses. Deciphering the mechanism of presynaptic metamodulation would permit indirect approaches to control the activity of presynaptic release-regulating receptors that are currently orphans of direct ligands/modulators, paving the road for the proposal of new therapeutic approaches for central neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer SZ (1974) Presynaptic regulation of catecholamine release. Biochem Pharmacol 23(13):1793–1800

    Article  CAS  PubMed  Google Scholar 

  2. Langer SZ (1997) 25 years since the discovery of presynaptic receptors: present knowledge and future perspectives. Trends Pharmacol Sci 18(3):95–99

    Article  CAS  PubMed  Google Scholar 

  3. Raiteri M, Marchi M, Maura G et al (1989) Presynaptic regulation of acetylcholine release in the CNS. Cell Biol Int Rep 13(12):1109–1118

    Article  CAS  PubMed  Google Scholar 

  4. Wonnacott S, Drasdo A, Sanderson E et al (1990) Presynaptic nicotinic receptors and the modulation of transmitter release. Ciba Found Symp 152:87–101; discussion 102-105

    CAS  PubMed  Google Scholar 

  5. von Kügelgen I, Kurz K, Bültmann R et al (1994) Presynaptic modulation of the release of the co-transmitters noradrenaline and ATP. Fundam Clin Pharmacol 8(3):207–213

    Article  Google Scholar 

  6. Raiteri M (1994) Functional studies of neurotransmitter receptors in human brain. Life Sci 54(22):1635–1647

    Article  CAS  PubMed  Google Scholar 

  7. Raiteri M (1987) Release in vitro as a model to study neurotransmitter receptors. Pharmacol Res Commun 19(12):927–941

    Article  CAS  PubMed  Google Scholar 

  8. Dunant Y, Israël M (1998) In vitro reconstitution of neurotransmitter release. Neurochem Res 23(5):709–718

    Article  CAS  PubMed  Google Scholar 

  9. Raiteri L, Raiteri M (2000) Synaptosomes still viable after 25 years of superfusion. Neurochem Res 25:1265–1274

    Article  CAS  PubMed  Google Scholar 

  10. Bennett MR, Kearns JL (2000) Statistics of transmitter release at nerve terminals. Prog Neurobiol 60(6):545–606

    Article  CAS  PubMed  Google Scholar 

  11. Pinheiro PS, Mulle C (2008) Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 9(6):423–436

    Article  CAS  PubMed  Google Scholar 

  12. Gray BE, Wittaker VP (1962) The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–91

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jones DG, Bradford HF (1971) Observations on the morphology of mammalian synaptosomes following their incubation and electrical stimulation. Brain Res 28(3):491–499

    Article  CAS  PubMed  Google Scholar 

  14. Harrison SM, Jarvie PE, Dunkley PR (1988) A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: viability of subcellular fractions. Brain Res 441(1–2):72–80

    Article  CAS  PubMed  Google Scholar 

  15. Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3(11):1718–1728

    Article  CAS  PubMed  Google Scholar 

  16. de Belleroche JS, Bradford HF (1972) Synaptosome beds: a method for the study in vitro of the metabolism and function of nerve endings. Biochem J 127(2):21P

    Article  PubMed  PubMed Central  Google Scholar 

  17. Raiteri M, Angelini F, Levi G (1974) A simple apparatus for studying the release of neurotransmitters from synaptosomes. Eur J Pharmacol 25(3):411–414

    Article  CAS  PubMed  Google Scholar 

  18. Langer SZ (2008) Presynaptic autoreceptors regulating transmitter release. Neurochem Int 52(1–2):26–30

    Article  CAS  PubMed  Google Scholar 

  19. Raiteri M (2008) Presynaptic metabotropic glutamate and GABAB receptors. Handb Exp Pharmacol 184:373–407

    Article  CAS  Google Scholar 

  20. Raiteri L, Raiteri M (2015) Multiple functions of neuronal plasma membrane neurotransmitter transporters. Prog Neurobiol 134:1–16

    Article  CAS  PubMed  Google Scholar 

  21. Pittaluga A (2016) Presynaptic release-regulating mGlu1 receptors in central nervous system. Front Pharmacol 7:295

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pittaluga A (2019) Acute functional adaptations in isolated presynaptic terminals unveil Synaptosomal learning and memory. Int J Mol Sci 20(15):3641

    Article  CAS  PubMed Central  Google Scholar 

  23. Fuxe K, Agnati LF (1985) Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses. Med Res Rev 5(4):441–482

    Article  CAS  PubMed  Google Scholar 

  24. Katz PS, Edwards DH (1999) Metamodulation: the control and modulation of neuromodulation. In: Kats PS (ed) Beyond neurotransmission. Neuromodulation and its importance for information processing. Oxford University Press, New York, pp 349–382

    Chapter  Google Scholar 

  25. Sebastião AM, Ribeiro JA (2015) Neuromodulation and metamodulation by adenosine: Impact and subtleties upon synaptic plasticity regulation. Brain Res 1621:102–113

    Article  PubMed  Google Scholar 

  26. Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47

    Article  CAS  PubMed  Google Scholar 

  27. Stroebel D, Casado M, Paoletti P (2017) Triheteromeric NMDA receptors: from structure to synaptic physiology. Curr Opin Physiol 2:1–12

    PubMed  PubMed Central  Google Scholar 

  28. Pittaluga A, Pattarini R, Feligioni M et al (2001) N-methyl-D-aspartate receptors mediating hippocampal noradrenaline and striatal dopamine release display differential sensitivity to quinolinic acid, the HIV-1 envelope protein gp120, external pH and protein kinase C inhibition. J Neurochem 76:139–148

    Article  CAS  PubMed  Google Scholar 

  29. Pittaluga A, Raiteri M (1992a) N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. I. Location on axon terminals and pharmacological characterization. J Pharmacol Exp Ther 260:232–237

    CAS  PubMed  Google Scholar 

  30. Marchi M, Grilli M (2010) Presynaptic nicotinic receptors modulating neurotransmitter release in the central nervous system: functional interactions with other coexisting receptors. Prog Neurobiol 92:105–111

    Article  CAS  PubMed  Google Scholar 

  31. Zappettini S, Grilli M, Olivero G et al (2014) Nicotinic α7 receptor activation selectively potentiates the function of NMDA receptors in glutamatergic terminals of the nucleus accumbens. Front Cell Neurosci 8:332

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pittaluga A, Raiteri M (1992b) N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. III. Changes in the NMDA receptor complex induced by their functional cooperation. J Pharmacol Exp Ther 263:327–333

    CAS  PubMed  Google Scholar 

  33. Summa M, Di Prisco S, Grilli M et al (2011) Hippocampal AMPA autoreceptors positively coupled to NMDA autoreceptors traffic in a constitutive manner and undergo adaptative changes following enriched environment training. Neuropharmacology 61(8):1282–1290

    Article  CAS  PubMed  Google Scholar 

  34. Salamone A, Zappettini S, Grilli M et al (2014) Prolonged nicotine exposure down-regulates presynaptic NMDA receptors in dopaminergic terminals of the rat nucleus accumbens. Neuropharmacology 79:488–497

    Article  CAS  PubMed  Google Scholar 

  35. Olivero G, Cisani F, Vergassola M et al (2019) Prolonged activation of CXCR4 hampers the release-regulating activity of presynaptic NMDA receptors in rat hippocampal synaptosomes. Neurochem Int 126:59–63

    Article  CAS  PubMed  Google Scholar 

  36. Parodi M, Patti L, Grilli M et al (2006) Nicotine has a permissive role on the activation of metabotropic glutamate 5 receptors coexisting with nicotinic receptors on rat hippocampal noradrenergic nerve terminals. Neurochem Int 48(2):138–143

    Article  CAS  PubMed  Google Scholar 

  37. Luccini E, Musante V, Neri E et al (2007) Functional interactions between presynaptic NMDA receptors and metabotropic glutamate receptors co-expressed on rat and human noradrenergic terminals. Br J Pharmacol 151:1087–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Longordo F, Feligioni M, Chiaramonte G et al (2006) The human immunodeficiency virus-1 protein transactivator of transcription up-regulates N-methyl-D-aspartate receptor function by acting at metabotropic glutamate receptor 1 receptors coexisting on human and rat brain noradrenergic neurones. J Pharmacol Exp Ther 317:1097–1105

    Article  CAS  PubMed  Google Scholar 

  39. Pittaluga A, Bonfanti A, Raiteri M (2000) Somatostatin potentiates NMDA receptor function via activation of InsP(3) receptors and PKC leading to removal of the mg(2+) block without depolarization. Br J Pharmacol 130:557–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pittaluga A, Feligioni M, Longordo F et al (2005) Somatostatin-induced activation and up-regulation of N-methyl-D-aspartate receptor function: mediation through calmodulin-dependent protein kinase II, phospholipase C, protein kinase C, and tyrosine kinase in hippocampal noradrenergic nerve endings. J Pharmacol Exp Ther 313(1):242–249

    Article  CAS  PubMed  Google Scholar 

  41. Musante V, Summa M, Cunha RA et al (2011) Pre-synaptic glycine GlyT1 transporter--NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions. J Neurochem 117:516–527

    Article  CAS  PubMed  Google Scholar 

  42. Aragón C, López-Corcuera B (2005) Glycine transporters: crucial roles of pharmacological interest revealed by gene deletion. Trends Pharmacol Sci 26:283–286

    Article  PubMed  Google Scholar 

  43. Roux MJ, Supplisson S (2000) Neuronal and glial glycine transporters have different stoichiometries. Neuron 25(2):373–383

    Article  CAS  PubMed  Google Scholar 

  44. Collingridge GL, Isaac JT (2003) Functional roles of protein interactions with AMPA and kainate receptors. Neurosci Res 47(1):3–15

    Article  CAS  PubMed  Google Scholar 

  45. Marchi M, Grilli M, Pittaluga AM (2015) Nicotinic modulation of glutamate receptor function at nerve terminal level: a fine-tuning of synaptic signals. Front Pharmacol 6:89

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pittaluga A, Feligioni M, Longordo F et al (2006) Trafficking of presynaptic AMPA receptors mediating neurotransmitter release: neuronal selectivity and relationships with sensitivity to cyclothiazide. Neuropharmacology 50(3):286–296

    Article  CAS  PubMed  Google Scholar 

  47. Grilli M, Pittaluga A, Merlo-Pich E et al (2009) NMDA-mediated modulation of dopamine release is modified in rat prefrontal cortex and nucleus accumbens after chronic nicotine treatment. J Neurochem 108:408–416

    Article  CAS  PubMed  Google Scholar 

  48. Di Prisco S, Olivero G, Merega E et al (2016) CXCR4 and NMDA receptors are functionally coupled in rat hippocampal noradrenergic and glutamatergic nerve endings. J Neuroimmune Pharmacol 11:645–656

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This article is dedicated to all our colleagues and friends that starting from the 1980s (40 years ago, when the superfusion technique was first introduced at the Institute of Pharmacology, Faculty of Pharmacy, University of Genova) have carried out their studies using this methodological approach contributing to improve the knowledge of the presynaptic events of the chemical transmission in the central nervous system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pittaluga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pittaluga, A., Marchi, M. (2022). Synaptosomes and Metamodulation of Receptors. In: Dahlmanns, J., Dahlmanns, M. (eds) Synaptic Vesicles. Methods in Molecular Biology, vol 2417. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1916-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1916-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1915-5

  • Online ISBN: 978-1-0716-1916-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics