Skip to main content

Mass Synaptometry: Applying Mass Cytometry to Single Synapse Analysis

  • Protocol
  • First Online:
Synaptic Vesicles

Abstract

Synaptic degeneration is one of the earliest and phenotypically most significant features associated with numerous neurodegenerative conditions, including Alzheimer’s and Parkinson’s diseases. Synaptic changes are also known to be important in neurocognitive disorders such as schizophrenia and autism spectrum disorders. Several labs, including ours, have demonstrated that conventional (fluorescence-based) flow cytometry of individual synaptosomes is a robust and reproducible method. However, the repertoire of probes needed to assess comprehensively the type of synapse, pathologic proteins (including protein products of risk genes discovered in GWAS), and markers of stress and injury far exceeds what is achievable with conventional flow cytometry. We recently developed a method that applies CyTOF (Cytometry by Time-Of-Flight mass spectrometry) to high-dimensional analysis of individual human synaptosomes, overcoming many of the multiplexing limitations of conventional flow cytometry. We call this new method Mass Synaptometry. Here we describe the preparation of synaptosomes from human and mouse brain, the generation and quality control of the “SynTOF” (Synapse by Time-Of-Flight mass spectrometry) antibody panel, the staining protocol, and CyTOF parameter setup for acquisition, post-acquisition processing, and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  Google Scholar 

  2. Wishart TM, Parson SH, Gillingwater TH (2006) Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol 65:733–739

    Article  CAS  Google Scholar 

  3. Scott DA, Tabarean I, Tang Y et al (2010) A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. J Neurosci 30:8083–8095

    Article  CAS  Google Scholar 

  4. Bellucci A, Zaltieri M, Navarria L et al (2012) From alpha-synuclein to synaptic dysfunctions: new insights into the pathophysiology of Parkinson's disease. Brain Res 1476:183–202

    Article  CAS  Google Scholar 

  5. Overk CR, Masliah E (2014) Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease. Biochem Pharmacol 88:508–516

    Article  CAS  Google Scholar 

  6. McKeith IG, Boeve BF, Dickson DW et al (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium. Neurology 89:88–100

    Article  Google Scholar 

  7. Duyckaerts C, Potier MC, Delatour B (2008) Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:5–38

    Article  Google Scholar 

  8. Jucker M (2010) The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 16:1210–1214

    Article  CAS  Google Scholar 

  9. Galli S, Lopes DM, Ammari R et al (2014) Deficient Wnt signalling triggers striatal synaptic degeneration and impaired motor behaviour in adult mice. Nat Commun 5:4992

    Article  CAS  Google Scholar 

  10. Zhu H, Yan H, Tang N et al (2017) Impairments of spatial memory in an Alzheimer's disease model via degeneration of hippocampal cholinergic synapses. Nat Commun 8:1676

    Article  Google Scholar 

  11. Dietrich K, Bouter Y, Muller M et al (2018) Synaptic alterations in mouse models for Alzheimer disease-a special focus on N-truncated Abeta 4-42. Molecules 23:718

    Article  Google Scholar 

  12. Sokolow S, Henkins KM, Williams IA et al (2012) Isolation of synaptic terminals from Alzheimer’s disease cortex. Cytometry A 81:248–254

    Article  Google Scholar 

  13. Postupna NO, Keene CD, Latimer C et al (2014) Flow cytometry analysis of synaptosomes from post-mortem human brain reveals changes specific to Lewy body and Alzheimer’s disease. Lab Investig 94:1161–1172

    Article  CAS  Google Scholar 

  14. Postupna N, Latimer CS, Larson EB et al (2017) Human striatal dopaminergic and regional serotonergic synaptic degeneration with Lewy body disease and inheritance of APOE epsilon4. Am J Pathol 187:884–895

    Article  CAS  Google Scholar 

  15. Bilousova T, Miller CA, Poon WW et al (2016) Synaptic amyloid-beta oligomers precede p-tau and differentiate high pathology control cases. Am J Pathol 186:185–198

    Article  CAS  Google Scholar 

  16. Gylys KH, Bilousova T (2017) Flow cytometry analysis and quantitative characterization of tau in Synaptosomes from Alzheimer’s disease brains. Methods Mol Biol 1523:273–284

    Article  CAS  Google Scholar 

  17. Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696

    Article  CAS  Google Scholar 

  18. Simmons AJ, Banerjee A, McKinley ET et al (2015) Cytometry-based single-cell analysis of intact epithelial signaling reveals MAPK activation divergent from TNF-alpha-induced apoptosis in vivo. Mol Syst Biol 11:835

    Article  Google Scholar 

  19. Spitzer MH, Gherardini PF, Fragiadakis GK et al (2015) IMMUNOLOGY. An interactive reference framework for modeling a dynamic immune system. Science 349:1259425

    Article  Google Scholar 

  20. Spitzer MH, Nolan GP (2016) Mass cytometry: single cells, many features. Cell 165:780–791

    Article  CAS  Google Scholar 

  21. Wong MT, Chen J, Narayanan S et al (2015) Mapping the diversity of follicular helper T cells in human blood and tonsils using high-dimensional mass cytometry analysis. Cell Rep 11:1822–1833

    Article  CAS  Google Scholar 

  22. Chevrier S, Levine JH, ZaNotelli VRT et al (2017) An immune atlas of clear cell renal cell carcinoma. Cell 169(736–49):e18

    Google Scholar 

  23. Hamers AAJ, Thomas GD, Kim C et al (2017) Diversity of human monocyte subsets revealed by CyTOF mass cytometry. J Immunol 198(1 Supplement):208.5

    Google Scholar 

  24. Korin B, Ben-Shaanan TL, Schiller M et al (2017) High-dimensional, single-cell characterization of the brain’s immune compartment. Nat Neurosci 20:1300–1309

    Article  CAS  Google Scholar 

  25. Lavin Y, Kobayashi S, Leader A et al (2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:750–765.e17

    Article  CAS  Google Scholar 

  26. Mrdjen D, Pavlovic A, Hartmann FJ et al (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48(380–95):e6

    Google Scholar 

  27. Gajera CR, Fernandez R, Postupna N et al (2019) Mass synaptometry: high-dimensional multi parametric assay for single synapses. J Neurosci Methods 312:73–83

    Article  Google Scholar 

  28. Bandura DR, Baranov VI, Ornatsky OI et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81:6813–6822

    Article  CAS  Google Scholar 

  29. Bendall SC, Nolan GP, Roederer M et al (2012) A deep profiler’s guide to cytometry. Trends Immunol 33:323–332

    Article  CAS  Google Scholar 

  30. Schulz AR, Baumgart S, Schulze J et al (2019) Stabilizing antibody cocktails for mass cytometry. Cytometry A 95:910–916

    CAS  PubMed  Google Scholar 

  31. Sumatoh HR, Teng KW, Cheng Y et al (2017) Optimization of mass cytometry sample cryopreservation after staining. Cytometry A 91A:48–61

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH: P50 NS062684, P50 AG047366, RF1 AG053959, R01 AG056287, R01AG057915, DP2 EB024246, and P50 AG005136 (CDK), and by the Nancy and Buster Alvord Endowment. We thank M. Holden and M. Leipold of the Stanford Human Immune Monitoring Core for their assistance and guidance, A. Beller from the Department of Pathology, University of Washington for administrative support, and E. Fox from Department of Pathology, Stanford University for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandresh R. Gajera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gajera, C.R. et al. (2022). Mass Synaptometry: Applying Mass Cytometry to Single Synapse Analysis. In: Dahlmanns, J., Dahlmanns, M. (eds) Synaptic Vesicles. Methods in Molecular Biology, vol 2417. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1916-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1916-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1915-5

  • Online ISBN: 978-1-0716-1916-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics