Skip to main content

Quantitative Analysis of Presynaptic Vesicle Luminal pH in Cultured Neurons

  • Protocol
  • First Online:
Synaptic Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2417))

  • 874 Accesses

Abstract

Newly generated synaptic vesicles (SVs) are re-acidified by the activity of the vacuolar-type H+-ATPases. Since H+ gradient across SV membrane drives neurotransmitter uptake into SVs, precise measurements of steady-state vesicular pH and dynamics of re-acidification process will provide important information concerning the H+-driven neurotransmitter uptake. Indeed, we recently demonstrated distinct features of steady state and dynamics of vesicular pH between glutamatergic vesicles and GABAergic vesicles in cultured hippocampal neurons. In this article, we focus on an experimental protocol and setup required to determine steady-state luminal pH of SVs in living neurons. This protocol is composed of efficient expression of a pH-sensitive fluorescent protein in the lumen of SVs in cultured neurons, and recordings of its fluorescence changes under a conventional fluorescent microscope during local applications of acidic buffer and ionophores-containing solution at a given pH. The method described here can be easily applied for measuring luminal pH of different types of secretory organelles and other acidic organelles such as lysosomes and endosomes in cultured cell preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grabe M, Oster G (2001) Regulation of organelle acidity. J Gen Physiol 117(4):329–344. https://doi.org/10.1085/jgp.117.4.329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schultz ML, Tecedor L, Chang M et al (2011) Clarifying lysosomal storage diseases. Trends Neurosci 34(8):401–410. https://doi.org/10.1016/j.tins.2011.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Edwards RH (2007) The neurotransmitter cycle and quantal size. Neuron 55(6):835–858. https://doi.org/10.1016/j.neuron.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  4. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195. https://doi.org/10.1038/28190

    Article  CAS  PubMed  Google Scholar 

  5. Sankaranarayanan S, De Angelis D, Rothman JE et al (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79(4):2199–2208. https://doi.org/10.1016/S0006-3495(00)76468-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. http://www.fpvis.org/FP.html

  7. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909. https://doi.org/10.1038/nmeth819

    Article  CAS  PubMed  Google Scholar 

  8. Choy E, Philips M (2001) Green fluorescent protein-tagged Ras proteins for intracellular localization. Methods Enzymol 332:50–64. https://doi.org/10.1016/s0076-6879(01)32191-2

    Article  CAS  PubMed  Google Scholar 

  9. Egashira Y, Takase M, Takamori S (2015) Monitoring of vacuolar-type H+ ATPase-mediated proton influx into synaptic vesicles. J Neurosci 35(8):3701–3710. https://doi.org/10.1523/JNEUROSCI.4160-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Kakizaki T, Sakagami H et al (2009) Fluorescent labeling of both GABAergic and glycinergic neurons in vesicular GABA transporter (VGAT)-venus transgenic mouse. Neuroscience 164(3):1031–1043. https://doi.org/10.1016/j.neuroscience.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  11. Shaner NC, Lin MZ, McKeown MR et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5(6):545–551. https://doi.org/10.1038/nmeth.1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Egashira Y, Takase M, Watanabe S et al (2016) Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading. Proc Natl Acad Sci U S A 113(38):10702–10707. https://doi.org/10.1073/pnas.1604527113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hioki H, Kuramoto E, Konno M et al (2009) High-level transgene expression in neurons by lentivirus with Tet-off system. Neurosci Res 63(2):149–154. https://doi.org/10.1016/j.neures.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  14. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7(8):2745–2752. https://doi.org/10.1128/mcb.7.8.2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitchell SJ, Ryan TA (2004) Syntaxin-1A is excluded from recycling synaptic vesicles at nerve terminals. J Neurosci 24(20):4884–4888. https://doi.org/10.1523/JNEUROSCI.0174-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernandez-Alfonso T, Ryan TA (2008) A heterogeneous “resting” pool of synaptic vesicles that is dynamically interchanged across boutons in mammalian CNS synapses. Brain Cell Biol 36(1–4):87–100. https://doi.org/10.1007/s11068-008-9030-y

    Article  PubMed  PubMed Central  Google Scholar 

  17. Katsurabayashi S, Kawano H, Ii M et al (2016) Overexpression of Swedish mutant APP in aged astrocytes attenuates excitatory synaptic transmission. Physiol Rep 4(1):e12665. https://doi.org/10.14814/phy2.12665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wojcik SM, Katsurabayashi S, Guillemin I et al (2006) A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron 50(4):575–587. https://doi.org/10.1016/j.neuron.2006.04.016

    Article  CAS  PubMed  Google Scholar 

  19. Granseth B, Odermatt B, Royle SJ et al (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51(6):773–786. https://doi.org/10.1016/j.neuron.2006.08.029

    Article  CAS  PubMed  Google Scholar 

  20. Pan PY, Marrs J, Ryan TA (2015) Vesicular glutamate transporter 1 orchestrates recruitment of other synaptic vesicle cargo proteins during synaptic vesicle recycling. J Biol Chem 290(37):22593–22601. https://doi.org/10.1074/jbc.M115.651711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Santos MS, Park CK, Foss SM et al (2013) Sorting of the vesicular GABA transporter to functional vesicle pools by an atypical dileucine-like motif. J Neurosci 33(26):10634–10646. https://doi.org/10.1523/JNEUROSCI.0329-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from JSPS KAKENHI (16H04675), the JSPS Core-to-Core Program, A. Advanced Research Networks grant, and a research grant from Takeda Foundation to S.T., from JSPS KAKENHI (16K18397) to Y.E and from JSPS KAKENHI (25350988 and 17K08328) to S.K. Finally, we would like to thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshihiro Egashira or Shigeo Takamori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Egashira, Y., Katsurabayashi, S., Takamori, S. (2022). Quantitative Analysis of Presynaptic Vesicle Luminal pH in Cultured Neurons. In: Dahlmanns, J., Dahlmanns, M. (eds) Synaptic Vesicles. Methods in Molecular Biology, vol 2417. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1916-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1916-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1915-5

  • Online ISBN: 978-1-0716-1916-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics