Skip to main content

Whole Endosome Recording of Vesicular Neurotransmitter Transporter Currents

  • Protocol
  • First Online:
Synaptic Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2417))

  • 961 Accesses

Abstract

The analysis of organellar membrane transporters presents many technical problems. In general, their activity depends on a H+ electrochemical driving force (ΔμH+). However, transport itself influences the expression of ΔμH+ in standard radiotracer flux assays, making it difficult to disentangle the role of the chemical component ΔpH and the membrane potential Δψ. Whole endosome recording in voltage clamp circumvents many of these problems, controlling ionic conditions as well as membrane potential inside and outside the organelle . This approach has been used primarily to study the properties of endolysosomal channels, which generate substantial currents (Saito et al., J Biol Chem 282(37):27327–27333, 2007; Cang et al., Nat Chem Biol 10(6):463–469, 2014; Cang et al., Cell 152(4):778–790, 2013; Chen et al., Nat Protoc 12(8):1639–1658, 2017; Samie et al., Dev Cell 26(5):511–524, 2013; Wang et al., Cell 151(2):372–383, 2012). Electrogenic transport produces much smaller currents, but we have recently reported the detection of transport currents and an uncoupled Cl conductance associated with the vesicular glutamate transporters (VGLUTs) that fill synaptic vesicles with glutamate (Chang et al., eLife 7:e34896, 2018). In this protocol, we will focus on the measurement of transport currents on enlarged endosomes of heterologous mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maycox PR, Deckwerth T, Hell JW et al (1988) Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J Biol Chem 263(30):15423–15428

    Article  CAS  Google Scholar 

  2. Kish PE, Fischer-Bovenkerk C, Ueda T (1989). Active transport of gamma-aminobutyric acid and glycine into synaptic vesicles. Proc Natl Acad Sci USA 86, 3877–3881.

    Article  CAS  Google Scholar 

  3. Bellocchio EE (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289(5481):957–960. https://doi.org/10.1126/science.289.5481.957

    Article  CAS  PubMed  Google Scholar 

  4. Takamori S, Rhee JS, Rosenmund C et al (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407(6801):189–194. https://doi.org/10.1038/35025070

    Article  CAS  PubMed  Google Scholar 

  5. Eriksen J, Chang R, McGregor M et al (2016) Protons regulate vesicular glutamate transporters through an allosteric mechanism. Neuron 90(4):768–780. https://doi.org/10.1016/j.neuron.2016.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Juge N, Yoshida Y, Yatsushiro S et al (2006) Vesicular glutamate transporter contains two independent transport machineries. J Biol Chem 281(51):39499–39506. https://doi.org/10.1074/jbc.M607670200

    Article  CAS  PubMed  Google Scholar 

  7. Schenck S, Wojcik SM, Brose N et al (2009) A chloride conductance in VGLUT1 underlies maximal glutamate loading into synaptic vesicles. Nat Neurosci 12(2):156–162. https://doi.org/10.1038/nn.2248

    Article  CAS  PubMed  Google Scholar 

  8. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427(6972):360–364. https://doi.org/10.1038/nature02246

    Article  CAS  PubMed  Google Scholar 

  9. Garg V, Kirichok YY (2019) Patch-clamp analysis of the mitochondrial calcium uniporter. In: Raffaello A, Vecellio Reane D (eds) Calcium signalling: methods and protocols. Springer New York, New York, NY, pp 75–86. https://doi.org/10.1007/978-1-4939-9018-4_7

    Chapter  Google Scholar 

  10. Saito M, Hanson PI, Schlesinger P (2007) Luminal chloride-dependent activation of endosome calcium channels: patch clamp study of enlarged endosomes. J Biol Chem 282(37):27327–27333. https://doi.org/10.1074/jbc.M702557200

    Article  CAS  PubMed  Google Scholar 

  11. Chen CC, Cang C, Fenske S et al (2017) Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nat Protoc 12(8):1639–1658. https://doi.org/10.1038/nprot.2017.036

    Article  CAS  PubMed  Google Scholar 

  12. Samie M, Wang X, Zhang X et al (2013) A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev Cell 26(5):511–524. https://doi.org/10.1016/j.devcel.2013.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang X, Zhang X, Dong XP et al (2012) TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell 151(2):372–383. https://doi.org/10.1016/j.cell.2012.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miao Y, Li G, Zhang X et al (2015) A TRP Channel senses lysosome neutralization by pathogens to trigger their expulsion. Cell 161(6):1306–1319. https://doi.org/10.1016/j.cell.2015.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cang C, Bekele B, Ren D (2014) The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nat Chem Biol 10(6):463–469. https://doi.org/10.1038/nchembio.1522

    Article  CAS  PubMed  Google Scholar 

  16. Cang C, Zhou Y, Navarro B et al (2013) mTOR regulates lysosomal ATP-sensitive two-pore Na(+) channels to adapt to metabolic state. Cell 152(4):778–790. https://doi.org/10.1016/j.cell.2013.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barbieri MA, Li G, Mayorga LS et al (1996) Characterization of Rab5:Q79L-stimulated endosome fusion. Arch Biochem Biophys 326(1):64–72. https://doi.org/10.1006/abbi.1996.0047

    Article  CAS  PubMed  Google Scholar 

  18. Stenmark H, Parton RG, Steele-Mortimer O et al (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 13(6):1287–1296

    Article  CAS  Google Scholar 

  19. Lu Y, Dong S, Hao B et al (2014) Vacuolin-1 potently and reversibly inhibits autophagosome-lysosome fusion by activating RAB5A. Autophagy 10(11):1895–1905. https://doi.org/10.4161/auto.32200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang R, Eriksen J, Edwards RH (2018) The dual role of chloride in synaptic vesicle glutamate transport. eLife 7:e34896. https://doi.org/10.7554/eLife.34896

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chang, R., Edwards, R.H. (2022). Whole Endosome Recording of Vesicular Neurotransmitter Transporter Currents. In: Dahlmanns, J., Dahlmanns, M. (eds) Synaptic Vesicles. Methods in Molecular Biology, vol 2417. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1916-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1916-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1915-5

  • Online ISBN: 978-1-0716-1916-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics