Skip to main content

Live-Imaging of Axonal Cargoes in Drosophila Brain Explants Using Confocal Microscopy

  • Protocol
  • First Online:
Synaptic Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2417))

Abstract

Live-imaging of axonal cargoes within central nervous system has been a long-lasting interest for neurobiologists as axonal transport plays critical roles in neuronal growth, function, and survival. Many kinds of cargoes are transported within axons, including synaptic vesicles and a variety of membrane-bound and membrane-less organelles. Imaging these cargoes at high spatial and temporal resolution, and within living brains, is technically very challenging. Here, we describe a quantitative method, based on customized mounting chambers, allowing live-imaging of axonal cargoes transported within the maturing brain of the fruit fly, Drosophila melanogaster. With this method, we could visualize in real time, using confocal microscopy, cargoes transported along axons. Our protocol is simple and easy to set up, as brains are mounted in our imaging chambers and ready to be imaged in about 1 h. Another advantage of our method is that it can be combined with pharmacological treatments or super-resolution microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guedes-Dias P, Holzbaur ELF (2019) Axonal transport: driving synaptic function. Science 366(6462):eaaw9997. https://doi.org/10.1126/science.aaw9997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sleigh JN, Rossor AM, Fellows AD et al (2019) Axonal transport and neurological disease. Nat Rev Neurol 15(12):691–703. https://doi.org/10.1038/s41582-019-0257-2

    Article  PubMed  Google Scholar 

  3. Millecamps S, Julien JP (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14(3):161–176. https://doi.org/10.1038/nrn3380

    Article  CAS  PubMed  Google Scholar 

  4. McGurk L, Berson A, Bonini NM (2015) Drosophila as an in vivo model for human neurodegenerative disease. Genetics 201(2):377–402. https://doi.org/10.1534/genetics.115.179457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meltzer H, Marom E, Alyagor I et al (2019) Tissue-specific (ts)CRISPR as an efficient strategy for in vivo screening in Drosophila. Nat Commun 10(1):2113. https://doi.org/10.1038/s41467-019-10140-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mattedi F, Vagnoni A (2019) Temporal control of axonal transport: the extreme case of organismal ageing. Front Cell Neurosci 13:393. https://doi.org/10.3389/fncel.2019.00393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Inoshita T, Hattori N, Imai Y (2017) Live imaging of axonal transport in the motor neurons of Drosophila larvae. Bio-Protocol 7(23). https://doi.org/10.21769/BioProtoc.2631

  8. Daniele JR, Baqri RM, Kunes S (2017) Analysis of axonal trafficking via a novel live-imaging technique reveals distinct hedgehog transport kinetics. Biol Open 6(5):714–721. https://doi.org/10.1242/bio.024075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghannad-Rezaie M, Wang X, Mishra B et al (2012) Microfluidic chips for in vivo imaging of cellular responses to neural injury in Drosophila larvae. PLoS One 7(1):e29869. https://doi.org/10.1371/journal.pone.0029869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mudher A, Shepherd D, Newman TA et al (2004) GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol Psychiatry 9(5):522–530. https://doi.org/10.1038/sj.mp.4001483

    Article  CAS  PubMed  Google Scholar 

  11. Pilling AD, Horiuchi D, Lively CM et al (2006) Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17(4):2057–2068. https://doi.org/10.1091/mbc.e05-06-0526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sinadinos C, Burbidge-King T, Soh D et al (2009) Live axonal transport disruption by mutant huntingtin fragments in Drosophila motor neuron axons. Neurobiol Dis 34(2):389–395. https://doi.org/10.1016/j.nbd.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  13. Vagnoni A, Bullock SL (2016) A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing. Nat Protoc 11(9):1711–1723. https://doi.org/10.1038/nprot.2016.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Estes PS, Ho GL, Narayanan R et al (2000) Synaptic localization and restricted diffusion of a Drosophila neuronal synaptobrevin--green fluorescent protein chimera in vivo. J Neurogenet 13(4):233–255. https://doi.org/10.3109/01677060009084496

    Article  CAS  PubMed  Google Scholar 

  15. Zhang YQ, Rodesch CK, Broadie K (2002) Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34(1–2):142–145. https://doi.org/10.1002/gene.10144

    Article  CAS  PubMed  Google Scholar 

  16. Medioni C, Ramialison M, Ephrussi A et al (2014) Imp promotes axonal remodeling by regulating profilin mRNA during brain development. Curr Biol 24(7):793–800. https://doi.org/10.1016/j.cub.2014.02.038

    Article  CAS  PubMed  Google Scholar 

  17. Medioni C, Ephrussi A, Besse F (2015) Live imaging of axonal transport in Drosophila pupal brain explants. Nat Protoc 10(4):574–584. https://doi.org/10.1038/nprot.2015.034

    Article  CAS  PubMed  Google Scholar 

  18. Wu JS, Luo L (2006) A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat Protoc 1(4):2110–2115. https://doi.org/10.1038/nprot.2006.336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank I. Gaspar for his help in image acquisition and analysis. We are also grateful to L. Burger from the EMBL mechanical workshop for machining the metal rings and G. Durand for the technical drawing of these rings. We thank also Y. Belyaev and S. Terjung from the EMBL microscopy platform (AMLF) for their advice in selecting the appropriate microscope for imaging. We thank W. Huebner for his daily help at EMBL, and F. Brau from the IPMC imaging facility. C.M. was supported by short-term fellowships from EMBO, FEBS and P3 (http://www.p-cube.eu/), and by a long-term fellowship from “Ville de Nice.” Development of this protocol was supported by grants (ATIP/CNRS, FRM Implantation Nouvelles Equipes, ARC Fixe, HFSP Career Development Award and ANR JCJC) to F.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Medioni .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Live-imaging of membranous vesicles transported within a bundle of axons (mushroom body gamma neurons). The fluorescent reporter myr-tdTomato was expressed specifically in the mushroom body gamma neurons. Both axonal plasma membranes and bidirectional motile membrane vesicles are labeled. The size of the imaged region is 380 × 250 pixels (53.14 × 34.96 μm). Scale bar: 5 μm. Acquisition rate: 1 frame/s. (Adapted from [17]). (MP4 14933 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Medioni, C., Ephrussi, A., Besse, F. (2022). Live-Imaging of Axonal Cargoes in Drosophila Brain Explants Using Confocal Microscopy. In: Dahlmanns, J., Dahlmanns, M. (eds) Synaptic Vesicles. Methods in Molecular Biology, vol 2417. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1916-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1916-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1915-5

  • Online ISBN: 978-1-0716-1916-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics