Skip to main content

Synthesis of Phthaladyn-29 and Naphthalimide-10, GTP Site Directed Dynamin GTPase Inhibitors

  • Protocol
  • First Online:
Synaptic Vesicles

Abstract

Herein we describe the detailed synthesis of the dynamin inhibitors Phthaladyn-29 and Napthaladyn-10, and their chemical scaffold matched partner inactive compounds. Combined with the assay data provided, this allows the interrogation of dynamin in vitro and potentially in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferguson SM, De Camilli P (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13:75–88. https://doi.org/10.1038/nrm3266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boumil RM, Letts VA, Roberts MC et al (2010) A missense mutation in a highly conserved alternate exon of dynamin-1 causes epilepsy in fitful mice. PLoS Genet 6:e1001046. https://doi.org/10.1371/journal.pgen.1001046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pathan SA, Jain GK, Akhter S et al (2010) Insights into the novel three ‘D’s of epilepsy treatment: drugs, delivery systems and devices. Drug Discov Today 15:717–732. https://doi.org/10.1016/j.drudis.2010.06.014

    Article  CAS  PubMed  Google Scholar 

  4. Chaumont S, André C, Perrais D et al (2013) Agonist-dependent endocytosis of γ-aminobutyric acid type A (GABAA) receptors revealed by a γ2(R43Q) epilepsy mutation. J Biol Chem 288:28254–28265. https://doi.org/10.1074/jbc.M113.470807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eleniste PP, Huang S, Wayakanon K et al (2014) Osteoblast differentiation and migration are regulated by Dynamin GTPase activity. Int J Biochem Cell Biol 46:9–18. https://doi.org/10.1016/j.biocel.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  6. Bruzzaniti A, Neff L, Sanjay A et al (2005) Dynamin forms a Src kinase-sensitive complex with Cbl and regulates podosomes and osteoclast activity. Mol Biol Cell 16:3301–3313. https://doi.org/10.1091/mbc.E04-12-1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolf MTF, Wu XR, Huang CL (2013) Uromodulin upregulates TRPV5 by impairing Caveolin-mediated endocytosis. Kidney Int 84:130–137. https://doi.org/10.1038/ki.2013.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Soda K, Balkin DM, Ferguson SM et al (2012) Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J Clin Invest 122:4401–4411. https://doi.org/10.1172/JCI65289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harper CB, Popoff MR, McCluskey A et al (2013) Targeting membrane trafficking in infection prophylaxis: dynamin inhibitors. Trends Cell Biol 23:90–101. https://doi.org/10.1016/j.tcb.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  10. Sun Y, Tien P (2013) From endocytosis to membrane fusion: emerging roles of dynamin in virus entry. Crit Rev Microbiol 39:166–179. https://doi.org/10.3109/1040841x.2012.694412

    Article  CAS  PubMed  Google Scholar 

  11. Chappie JS, Mears JA, Fang S et al (2011) A pseudo-atomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147:209–222. https://doi.org/10.1016/j.cell.2011.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marks B, Stowell MHB, Vallis Y et al (2001) GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410:231–235. https://doi.org/10.1038/35065645

    Article  CAS  PubMed  Google Scholar 

  13. Praefcke GJK, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147. https://doi.org/10.1038/nrm1313

    Article  CAS  PubMed  Google Scholar 

  14. Sever S, Muhlberg AB, Schmid SL (1999) Impairment of dynamin’s GAP domain stimulates receptor-mediated endocytosis. Nature 398:481–486. https://doi.org/10.1038/19024

    Article  CAS  PubMed  Google Scholar 

  15. Schmid SL, Frolov VA (2011) Dynamin: functional design of a membrane fission catalyst. Annu Rev Cell Dev Biol 27:79–105. https://doi.org/10.1146/annurev-cellbio-100109-104016

    Article  CAS  PubMed  Google Scholar 

  16. Faelber K, Held M, Gao S et al (2012) Structural insights into dynamin-mediated membrane fission. Structure 20:1621–1628. https://doi.org/10.1016/j.str.2012.08.028

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson SM, Brasnjo G, Hayashi M et al (2007) A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316:570–574. https://doi.org/10.1126/science.1140621

    Article  CAS  PubMed  Google Scholar 

  18. Liu YW, Surka MC, Schroeter T et al (2008) Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells. Mol Biol Cell 19:5347–5359. https://doi.org/10.1091/mbc.E08-08-0890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raimondi A, Ferguson SM, Lou X et al (2011) Overlapping role of dynamin isoforms in synaptic vesicle endocytosis. Neuron 70:1100–1114. https://doi.org/10.1016/j.neuron.2011.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hill TA, Gordon CP, McGeachie AB et al (2009) Inhibition of dynamin mediated endocytosis by the dynoles™—synthesis and functional activity of a family of indoles. J Med Chem 52:3762–3773. https://doi.org/10.1021/jm900036m

    Article  CAS  PubMed  Google Scholar 

  21. Luwor R, Morokoff AP, Amiridis S et al (2019) Targeting glioma stem cells by functional inhibition of dynamin 2: a novel treatment strategy for glioblastoma. Cancer Investig 37:144–155. https://doi.org/10.1080/07357907.2019.1582060

    Article  CAS  Google Scholar 

  22. Bain J, Plater L, Elliot M et al (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315. https://doi.org/10.1042/BJ20070797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park RJ, Shen H, Liu L et al (2013) Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors. J Cell Sci 126:5305–5312. https://doi.org/10.1242/jcs.138578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Odell LR, Howan D, Gordon CP et al (2010) The pthaladyns: competitive inhibitors of dynamin I and Dynamin II GTPase derived from virtual screening. J Med Chem 53:5267–5280. https://doi.org/10.1021/jm100442u

    Article  CAS  PubMed  Google Scholar 

  25. Abdel-Hamid MK, Macgregor KA, Odell LR et al (2015) 1,8-Naphthalimide derivatives: new leads against dynamin I GTPase activity. Org Biomol Chem 13:8016–8028. https://doi.org/10.1039/c5ob00751h

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer R. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Russell, C.C., Prichard, K.L., O’Brien, N.S., McCluskey, A., Robinson, P.J., Baker, J.R. (2022). Synthesis of Phthaladyn-29 and Naphthalimide-10, GTP Site Directed Dynamin GTPase Inhibitors. In: Dahlmanns, J., Dahlmanns, M. (eds) Synaptic Vesicles. Methods in Molecular Biology, vol 2417. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1916-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1916-2_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1915-5

  • Online ISBN: 978-1-0716-1916-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics