Skip to main content

Dynole 34-2 and Acrylo-Dyn 2-30, Novel Dynamin GTPase Chemical Biology Probes

  • Protocol
  • First Online:
Synaptic Vesicles

Abstract

This protocol describes the chemical synthesis of the dynamin inhibitors Dynole 34-2 and Acrylo-Dyn 2-30, and their chemical scaffold matched partner inactive compounds. The chosen active and inactive paired compounds represent potent dynamin inhibitors and very closely related dynamin-inactive compounds, with the synthesis of three of the four compounds readily possible via a common intermediate. Combined with the assay data provided, this allows the interrogation of dynamin in vitro and potentially in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faelber K, Posor Y, Gao S et al (2011) Crystal structure of nucleotide-free dynamin. Nature 477:556–560. https://doi.org/10.1038/nature10369

    Article  CAS  PubMed  Google Scholar 

  2. Mattila JP, Shnyrova AV, Sundborger AC et al (2015) A hemi-fission intermediate links two mechanistically distinct stages of membrane fission. Nature 524:109–113. https://doi.org/10.1038/nature14509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gu C, Yaddanapudi S, Weins A et al (2010) Direct dynamin-actin interactions regulate the actin skeleton. EMBO J 29:3593–3606. https://doi.org/10.1038/emboj.2010.249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jackson J, Papadopulos A, Meunier FA et al (2015) Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release. Mol Psych 20:810–819. https://doi.org/10.1038/mp.2015.56

    Article  CAS  Google Scholar 

  5. Jones DM, Alvarez LA, Nolan R et al (2017) Dynamin-2 stabilises the HIV-1 fusion pore with a low oligomeric state. Cell Rep 18:443–453. https://doi.org/10.1016/j.celrep.2016.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aggarwal A, Hitchen TL, Ootes L et al (2017) HIV infection is influenced by dynamin at 3 independent points in the viral life cycle. Traffic 18:392–410. https://doi.org/10.1111/tra.12481

    Article  CAS  PubMed  Google Scholar 

  7. Schiffer M, Teng B, Gu C et al (2015) Pharmacological targeting of actin-dependent dynamin oligomerisation ameliorates chronic kidney disease in diverse animal models. Nat Med 21:601–609. https://doi.org/10.1038/nm.3843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sever S, Altintas MM, Nankoe SR et al (2007) Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 117:2095–2104. https://doi.org/10.1172/JCI32022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sundborger AC, Fang S, Heymann JA et al (2014) A dynamin mutant defines a super-constricted pre-fission state. Cell Rep 8:734–742. https://doi.org/10.1016/j.celrep.2014.06.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kong L, Sochacki KA, Wang H et al (2018) Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 560:258–262. https://doi.org/10.1038/s41586-018-0378-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stowell MH, Marks B, Wigge P et al (1999) Necleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nat Cell Biol 1:27–32. https://doi.org/10.1038/8997

    Article  CAS  PubMed  Google Scholar 

  12. Morlot S, Galli V, Klein M et al (2012) Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 151:619–629. https://doi.org/10.1016/j.cell.2012.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen YJ, Zhang P, Egelman EH et al (2004) The stalk region of dynamin drives the constriction of dynamin tubes. Nat Struct Mol Biol 11:574–575. https://doi.org/10.1038/nsmb762

    Article  CAS  PubMed  Google Scholar 

  14. Hinshaw JE, Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374:190–192. https://doi.org/10.1038/374190a0

    Article  CAS  PubMed  Google Scholar 

  15. Zhang P, Hinshaw JE (2001) Three-dimensional reconstruction of dynamin in the constricted state. Nat Cell Biol 3:922–926. https://doi.org/10.1038/ncb1001-922

    Article  CAS  PubMed  Google Scholar 

  16. Ross JA, Chen Y, Muller J et al (2011) Dimeric endophilin A2 stimulates assembly and GTPase activity of dynamin 2. Biophys J 100:729–737. https://doi.org/10.1016/j.bpj.2010.12.3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Knezevic I, Predescu D, Bardita C et al (2011) Regulation of dynamin-2 assembly-disassembly and function through the SH3A domain of intersectin-1s. J Cell Mol Med 15:2364–2376. https://doi.org/10.1111/j.1582-4934.2010.01226.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robertson MJ, Deane F, Robinson PJ et al (2014) Synthesis of Dynole 34-2, Dynole 2-24 and Dyngo 4a for investigating dynamin GTPase. Nat Protoc 9:851–870. https://doi.org/10.1038/nprot.2014.046

    Article  CAS  PubMed  Google Scholar 

  19. Hill TA, Gordon CP, McGeachie AB et al (2009) Inhibition of dynamin mediated endocytosis by the dynoles™—synthesis and functional activity of a family of indoles. J Med Chem 52:3762–3773. https://doi.org/10.1021/jm900036m

    Article  CAS  PubMed  Google Scholar 

  20. Chircop M, Perera S, Mariana A et al (2011) Inhibition of dynamin by Dynole 34-2 induces cell death following cytokinesis failure in cancer cells. Mol Cancer Ther 10:1553–1562. https://doi.org/10.1158/1535-7163.MCT-11-0067

    Article  CAS  PubMed  Google Scholar 

  21. Tarleton M, Gilbert J, Robertson MJ et al (2011) Library synthesis and cytotoxicity of a family of 2-phenylacrylonitriles and discovery of an estrogen dependent breast cancer lead compound. Med Chem Commun 2:31–37. https://doi.org/10.1039/c0md00147c

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia C. Russell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Baker, J.R., O’Brien, N.S., Prichard, K.L., Robinson, P.J., McCluskey, A., Russell, C.C. (2022). Dynole 34-2 and Acrylo-Dyn 2-30, Novel Dynamin GTPase Chemical Biology Probes. In: Dahlmanns, J., Dahlmanns, M. (eds) Synaptic Vesicles. Methods in Molecular Biology, vol 2417. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1916-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1916-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1915-5

  • Online ISBN: 978-1-0716-1916-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics