Skip to main content

High-Throughput Extraction and Enzymatic Determination of Sugars and Fructans in Fructan-Accumulating Plants

  • Protocol
  • First Online:
Plant Circadian Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2398))

  • 1009 Accesses

Abstract

Fructans are carbohydrates present in more than 15% of flowering plants. They represent the major pool of carbohydrates in some species, especially when facing cold or drought. However, the functions of fructans with high or low degrees of polymerization (DP), their diurnal use, and the regulation of their synthesis and degradation in response to stresses still remain unclear. Here we present an enzymatic protocol adapted to 96-well microplates that simultaneously allows the determination of fructans and glucose, fructose, and sucrose. Moreover, the protocol allows to estimate the average DP of the fructans in the samples. The protocol is based on the enzymatic degradation of fructans into glucose and fructose and their subsequent conversion into gluconate 6-phosphate concomitant with the formation of NADH in the presence of ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sicher RC, Kremer DF, Harris WG (1984) Diurnal carbohydrate-metabolism of barley primary leaves. Plant Physiol 76(1):165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Farrar SC, Farrar JF (1986) Compartmentation and fluxes of sucrose in intact leaf blades of barley. New Phytol 103(4):645–657

    Article  CAS  Google Scholar 

  3. Bihmidine S, Julius BT, Dweikat I, Braun DM (2016) Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems. Plant Signal Behav 11(1):e1117721

    Article  PubMed  CAS  Google Scholar 

  4. Cairns AJ, Cookson A, Thomas BJ, Turner LB (2002) Starch metabolism in the fructan-grasses: patterns of starch accumulation in excised leaves of Lolium temulentum L. J Plant Physiol 159(3):293–305

    Article  CAS  Google Scholar 

  5. van Arkel J, Sevenier R, Hakkert JC, Bouwmeester HJ, Koops AJ, van der Meer IM (2013) Tailor-made fructan synthesis in plants: a review. Carbohydr Polym 93(1):48–56

    Article  PubMed  CAS  Google Scholar 

  6. Larry MW (1973) Carbohydrate reserves of grasses: a review. J Range Manag 26(1):13–18

    Article  Google Scholar 

  7. Lunn JE, Hatch MD (1995) Primary partitioning and storage of photosynthate in sucrose and starch in leaves of C-4 plants. Planta 197(2):385–391

    Article  CAS  Google Scholar 

  8. Farrar SC, Farrar JF (1985) Carbon fluxes in leaf blades of barley. New Phytol 100(3):271–283

    Article  CAS  Google Scholar 

  9. Meuriot F, Morvan-Bertrand A, Noiraud-Romy N, Decau ML, Escobar-Gutierrez AJ, Gastal F, Prud’homme MP (2018) Short-term effects of defoliation intensity on sugar remobilization and N fluxes in ryegrass. J Exp Bot 69(16):3975–3986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoshida M, Abe J, Moriyama M, Kuwabara T (1998) Carbohydrate levels among winter wheat cultivars varying in freezing tolerance and snow mold resistance during autumn and winter. Physiol Plant 103(1):8–16

    Article  CAS  Google Scholar 

  11. Peukert M, Thiel J, Peshev D, Weschke W, Van den Ende W, Mock HP, Matros A (2014) Spatio-temporal dynamics of fructan metabolism in developing barley grains. Plant Cell 26(9):3728–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. del Viso F, Puebla AF, Fusari CM, Casabuono AC, Couto AS, Pontis HG, Hopp HE, Heinz RA (2009) Molecular characterization of a putative sucrose: Fructan-6-fructosyltransferase (6-SFT) of the cold-resistant Patagonian grass Bromus pictus associated with fructan accumulation under low temperatures. Plant Cell Physiol 50(3):489–503

    Article  PubMed  CAS  Google Scholar 

  13. Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120(2):351–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muir JG, Shepherd SJ, Rosella O, Rose R, Barrett JS, Gibson PR (2007) Fructan and free fructose content of common Australian vegetables and fruit. J Agric Food Chem 55(16):6619–6627

    Article  CAS  PubMed  Google Scholar 

  15. Livingston DP (1990) Fructan precipitation from a water/ethanol extract of oats and barley. Plant Physiol 92(3):767–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Z, Mouradov A, Smith KF, Spangenberg G (2011) An improved method for quantitative analysis of total fructans in plant tissues. Anal Biochem 418(2):253–259

    Article  CAS  PubMed  Google Scholar 

  17. Ku Y, Jansen O, Oles CJ, Lazar EZ, Rader JI (2003) Precipitation of inulins and oligoglucoses by ethanol and other solvents. Food Chem 81(1):125–132

    Article  CAS  Google Scholar 

  18. Peshev D, Vergauwen R, Moglia A, Hideg E, Van den Ende W (2013) Towards understanding vacuolar antioxidant mechanisms: a role for fructans? J Exp Bot 64(4):1025–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hincha DK, Livingston DP, Premakumar R, Zuther E, Obel N, Cacela C, Heyer AG (2007) Fructans from oat and rye: composition and effects on membrane stability during drying. Biochim Biophys Acta Biomembr 1768(6):1611–1619

    Article  CAS  Google Scholar 

  20. Van den Ende W, Valluru R (2008) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60(1):9–18

    Article  PubMed  CAS  Google Scholar 

  21. Matros A, Peshev D, Peukert M, Mock H-P, Van den Ende W (2015) Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis. Plant J 82(5):822–839

    Article  CAS  PubMed  Google Scholar 

  22. Roth A, Luscher N, Sprenger N, Boller T, Wiemken A (1997) Fructan and fructan-metabolizing enzymes in the growth zone of barley leaves. New Phytol 136(1):73–79

    Article  CAS  Google Scholar 

  23. Cimini S, Locato V, Vergauwen R, Paradiso A, Cecchini C, Vandenpoel L, Verspreet J, Courtin CM, D’Egidio MG, Van den Ende W, De Gara L (2015) Fructan biosynthesis and degradation as part of plant metabolism controlling sugar fluxes during durum wheat kernel maturation. Front Plant Sci 6:89

    Article  PubMed  PubMed Central  Google Scholar 

  24. Versluys M, Kirtel O, Toksoy Oner E, Van den Ende W (2018) The fructan syndrome: evolutionary aspects and common themes among plants and microbes. Plant Cell Environ 41(1):16–38

    Article  CAS  PubMed  Google Scholar 

  25. Schnyder H (1993) The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling — a review. New Phytol 123(2):233–245

    Article  Google Scholar 

  26. Nagaraj VJ, Altenbach D, Galati V, Luscher M, Meyer AD, Boller T, Wiemken A (2004) Distinct regulation of sucrose: sucrose-1-fructosyltransferase (1-SST) and sucrose: fructan-6-fructosyltransferase (6-SFT), the key enzymes of fructan synthesis in barley leaves: 1-SST as the pacemaker. New Phytol 161(3):735–748

    Article  CAS  PubMed  Google Scholar 

  27. Nagaraj VJ, Riedl R, Boller T, Wiemken A, Meyer AD (2001) Light and sugar regulation of the barley sucrose: fructan 6-fructosyltransferase promoter. J Plant Physiol 158(12):1601–1607

    Article  CAS  Google Scholar 

  28. Ritsema T, Brodmann D, Diks SH, Bos CL, Nagaraj V, Pieterse CM, Boller T, Wiemken A, Peppelenbosch MP (2009) Are small GTPases signal hubs in sugar-mediated induction of fructan biosynthesis? PLoS One 4(8):e6605

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jin Y, Fei M, Rosenquist S, Jin L, Gohil S, Sandstrom C, Olsson H, Persson C, Hoglund AS, Fransson G, Ruan Y, Aman P, Jansson C, Liu C, Andersson R, Sun C (2017) A dual-promoter gene orchestrates the sucrose-coordinated synthesis of starch and fructan in barley. Mol Plant 10(12):1556–1570

    Article  CAS  PubMed  Google Scholar 

  30. Arkel V (2014) Fructan biosynthesis regulation and the production of tailor-made fructan in plants. In: Polysaccharides: natural fibers in food and nutrition. CRC Press, Boca Raton, FL, pp 1–29

    Google Scholar 

  31. Cairns AJ (2003) Fructan biosynthesis in transgenic plants. J Exp Bot 54(382):549–567

    Article  CAS  PubMed  Google Scholar 

  32. Chalmers J, Lidgett A, Cummings N, Cao Y, Forster J, Spangenberg G (2005) Molecular genetics of fructan metabolism in perennial ryegrass. Plant Biotechnol J 3(5):459–474

    Article  CAS  PubMed  Google Scholar 

  33. Apolinario AC, de Lima Damasceno BP, de Macedo Beltrao NE, Pessoa A, Converti A, da Silva JA (2014) Inulin-type fructans: a review on different aspects of biochemical and pharmaceutical technology. Carbohydr Polym 101:368–378

    Article  CAS  PubMed  Google Scholar 

  34. Xue GP, Drenth J, Glassop D, Kooiker M, McIntyre CL (2013) Dissecting the molecular basis of the contribution of source strength to high fructan accumulation in wheat. Plant Mol Biol 81(1–2):71–92

    Article  CAS  PubMed  Google Scholar 

  35. Obenland DM, Simmen U, Boller T, Wiemken A (1991) Regulation of sucrose-sucrose-fructosyltransferase in barley leaves. Plant Physiol 97(2):811–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suarez-Gonzalez EM, Lopez MG, Delano-Frier JP, Gomez-Leyva JF (2014) Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors. J Plant Physiol 171(3–4):359–372

    Article  CAS  PubMed  Google Scholar 

  37. Wagner W, Wiemken A (1987) Enzymology of fructan synthesis in grasses: properties of sucrose-sucrose-fructosyltransferase in barley leaves (Hordeum-vulgare-L cv Gerbel). Plant Physiol 85(3):706–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wagner W, Wiemken A, Matile P (1986) Regulation of fructan metabolism in leaves of barley (Hordeum vulgare L cv Gerbel). Plant Physiol 81(2):444–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bohacenko J (2014) Fructan content determination by HPLC method with refractometric detection. Listy Cukrov Repar 130(1):28–32

    Google Scholar 

  40. Longland AC, Dhanoa MS, Harris PA (2012) Comparison of a colorimetric and a high-performance liquid chromatography method for the determination of fructan in pasture grasses for horses. J Sci Food Agric 92(9):1878–1885

    Article  CAS  PubMed  Google Scholar 

  41. Verspreet J, Hansen AH, Dornez E, Courtin CM, Harrison SJ (2014) A new high-throughput LC-MS method for the analysis of complex fructan mixtures. Anal Bioanal Chem 406(19):4785–4788

    Article  CAS  PubMed  Google Scholar 

  42. Rao RSP, Andersen JR, Dionisio G, Boelt B (2011) Fructan accumulation and transcription of candidate genes during cold acclimation in three varieties of Poa pratensis. J Plant Physiol 168(4):344–351

    Article  CAS  PubMed  Google Scholar 

  43. Stitt M, Lilley RM, Gerhardt R, Heldt HW (1989) Metabolite levels in specific cells and subcellular compartments of plant leaves. Methods Enzymol 174:518–552

    Article  CAS  Google Scholar 

  44. Cross JM, von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, Palacios N, Stitt M (2006) Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiol 142(4):1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McComb RB, Bond LW, Burnett RW, Keech RC, Bowers GN Jr (1976) Determination of the molar absorptivity of NADH. Clin Chem 22(2):141–150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Kallyne Barros was supported by a postgraduate studentship funded by CNPQ (ID. 233005/2014-5) and Auxiliadora Oliveira Martins by CNPq (ID. 210299/2015-0). Ronan Sulpice and Masami Inaba were supported by a Research Stimulus Grant (VICCI—Grant No: 14/S/81) funded by the Irish Department of Agriculture, Food and the Marine (DAFM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronan Sulpice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barros, K.A., Inaba, M., Martins, A.O., Sulpice, R. (2022). High-Throughput Extraction and Enzymatic Determination of Sugars and Fructans in Fructan-Accumulating Plants. In: Staiger, D., Davis, S., Davis, A.M. (eds) Plant Circadian Networks. Methods in Molecular Biology, vol 2398. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1912-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1912-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1911-7

  • Online ISBN: 978-1-0716-1912-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics