Skip to main content

Generating Trophoblast Stem Cells from Human Naïve Pluripotent Stem Cells

  • Protocol
  • First Online:
Human Naïve Pluripotent Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2416))

Abstract

The placenta is a transient organ that mediates the exchange of nutrients, gases, and waste products between the mother and the developing fetus and is indispensable for a healthy pregnancy. Epithelial cells in the placenta, which are termed trophoblasts, originate from the trophectoderm (TE) compartment of the blastocyst. The human trophoblast lineage consists of several distinct cell types, including the self-renewing and bipotent cytotrophoblast and the terminally differentiated extravillous trophoblast and syncytiotrophoblast. Despite the importance of trophoblast research, it has long been hindered by the scarce accessibility of primary tissue and the lack of a robust in vitro model system. Recently, a culture condition was developed that supports the isolation of bona fide human trophoblast stem cells (hTSCs) from human blastocysts or first-trimester placental tissues. In this chapter, we describe a protocol to derive bona fide hTSCs from naïve human pluripotent stem cells (hPSCs), thus presenting a robust methodology to generate hTSCs from a renewable and widely accessible source. This approach may be used to generate patient-specific hTSCs to study trophoblast-associated pathologies and serves as a powerful experimental platform to study the specification of human TE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shahbazi MN, Zernicka-Goetz M (2018) Deconstructing and reconstructing the mouse and human early embryo. Nat Cell Biol 20(8):878–887. https://doi.org/10.1038/s41556-018-0144-x

    Article  CAS  PubMed  Google Scholar 

  2. Piliszek A, Grabarek JB, Frankenberg SR et al (2016) Cell fate in animal and human blastocysts and the determination of viability. Mol Hum Reprod 22(10):681–690. https://doi.org/10.1093/molehr/gaw002

    Article  CAS  PubMed  Google Scholar 

  3. Burton GJ, Fowden AL (2015) The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci 370(1663):20140066. https://doi.org/10.1098/rstb.2014.0066

    Article  PubMed  PubMed Central  Google Scholar 

  4. James JL, Carter AM, Chamley LW (2012) Human placentation from nidation to 5 weeks of gestation. Part I: what do we know about formative placental development following implantation? Placenta 33(5):327–334. https://doi.org/10.1016/j.placenta.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  5. Roberts RM, Fisher SJ (2011) Trophoblast stem cells. Biol Reprod 84(3):412–421. https://doi.org/10.1095/biolreprod.110.088724

    Article  CAS  PubMed  Google Scholar 

  6. Koot YE, Teklenburg G, Salker MS et al (2012) Molecular aspects of implantation failure. Biochim Biophys Acta 1822(12):1943–1950. https://doi.org/10.1016/j.bbadis.2012.05.017

    Article  CAS  PubMed  Google Scholar 

  7. Burton GJ, Woods AW, Jauniaux E et al (2009) Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30(6):473–482. https://doi.org/10.1016/j.placenta.2009.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vento-Tormo R, Efremova M, Botting RA et al (2018) Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563(7731):347–353. https://doi.org/10.1038/s41586-018-0698-6

    Article  CAS  PubMed  Google Scholar 

  9. Norwitz ER (2006) Defective implantation and placentation: laying the blueprint for pregnancy complications. Reprod Biomed Online 13(4):591–599. https://doi.org/10.1016/S1472-6483(10)60649-9

    Article  CAS  PubMed  Google Scholar 

  10. Moffett A, Loke C (2006) Immunology of placentation in eutherian mammals. Nat Rev Immunol 6(8):584–594. https://doi.org/10.1038/nri1897

    Article  CAS  PubMed  Google Scholar 

  11. Niakan KK, Eggan K (2013) Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol 375(1):54–64. https://doi.org/10.1016/j.ydbio.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  12. Gerri C, McCarthy A, Alanis-Lobato G et al (2020) Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 587(7834):443–447. https://doi.org/10.1038/s41586-020-2759-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Okae H, Toh H, Sato T et al (2018) Derivation of human trophoblast stem cells. Cell Stem Cell 22(1):50–63.e56. https://doi.org/10.1016/j.stem.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  14. Dong C, Beltcheva M, Gontarz P et al (2020) Derivation of trophoblast stem cells from naive human pluripotent stem cells. elife 9:e52504. https://doi.org/10.7554/eLife.52504

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492. https://doi.org/10.1016/j.stem.2009.05.015

    Article  CAS  PubMed  Google Scholar 

  16. Theunissen TW, Powell BE, Wang H et al (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15(4):471–487. https://doi.org/10.1016/j.stem.2014.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takashima Y, Guo G, Loos R et al (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158(6):1254–1269. https://doi.org/10.1016/j.cell.2014.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niwa H, Toyooka Y, Shimosato D et al (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123(5):917–929. https://doi.org/10.1016/j.cell.2005.08.040

    Article  CAS  PubMed  Google Scholar 

  19. Kuckenberg P, Buhl S, Woynecki T et al (2010) The transcription factor TCFAP2C/AP-2gamma cooperates with CDX2 to maintain trophectoderm formation. Mol Cell Biol 30(13):3310–3320. https://doi.org/10.1128/mcb.01215-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cambuli F, Murray A, Dean W et al (2014) Epigenetic memory of the first cell fate decision prevents complete ES cell reprogramming into trophoblast. Nat Commun 5:5538. https://doi.org/10.1038/ncomms6538

    Article  CAS  PubMed  Google Scholar 

  21. Blij S, Parenti A, Tabatabai-Yazdi N et al (2015) Cdx2 efficiently induces trophoblast stem-like cells in naive, but not primed, pluripotent stem cells. Stem Cells Dev 24(11):1352–1365. https://doi.org/10.1089/scd.2014.0395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong C, Fischer L, Theunissen TW (2019) Recent insights into the naïve state of human pluripotency and its applications. Exp Cell Res 385(1):111645. https://doi.org/10.1016/j.yexcr.2019.111645

    Article  CAS  PubMed  Google Scholar 

  23. Theunissen TW, Friedli M, He Y et al (2016) Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19(4):502–515. https://doi.org/10.1016/j.stem.2016.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pontis J, Planet E, Offner S et al (2019) Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 24(5):724–735.e5. https://doi.org/10.1016/j.stem.2019.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petropoulos S, Edsgard D, Reinius B et al (2016) Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165(4):1012–1026. https://doi.org/10.1016/j.cell.2016.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cinkornpumin JK, Kwon SY, Guo Y et al (2020) Naive human embryonic stem cells can give rise to cells with a trophoblast-like transcriptome and Methylome. Stem Cell Reports 15(1):198–213. https://doi.org/10.1016/j.stemcr.2020.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bredenkamp N, Stirparo GG, Nichols J et al (2019) The cell-surface marker sushi containing domain 2 facilitates establishment of human naive pluripotent stem cells. Stem Cell Reports 12(6):1212–1222. https://doi.org/10.1016/j.stemcr.2019.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by the NIH Director’s New Innovator Award (DP2 GM137418) and grants from the Shipley Foundation Program for Innovation in Stem Cell Science, the Edward Mallinckrodt, Jr. Foundation, and the Washington University Children’s Discovery Institute. No federal NIH/NIGMS funds are used to develop 3D models of early human development. We thank Dr. Rowan Karvas for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorold W. Theunissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dong, C., Theunissen, T.W. (2022). Generating Trophoblast Stem Cells from Human Naïve Pluripotent Stem Cells. In: Rugg-Gunn, P. (eds) Human Naïve Pluripotent Stem Cells. Methods in Molecular Biology, vol 2416. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1908-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1908-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1907-0

  • Online ISBN: 978-1-0716-1908-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics