Skip to main content

Imaging Chambers for Arabidopsis Seedlings for Mitotic Studies

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2415))

  • 938 Accesses

Abstract

Flowering plants evolved away from creating centrosomes or conventional microtubule organizing centers. Therein, plants have posed a long-standing challenge to many of the conventional ideas for mitotic spindle construction and the process of chromosome segregation. The Arabidopsis seedling has emerged as a leading model for plant cell biological studies of the cytoskeleton and vesicle trafficking. Here we describe methods for creating a reusable chamber for mitotic studies in both seedling root and shoot cells with instruction for best practices with conventional microscopic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grossmann G, Guo WJ, Ehrhardt DW et al (2011) The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23:4234–4240

    Article  CAS  Google Scholar 

  2. Rahni R, Birnbaum KD (2019) Week-long imaging of cell divisions in the Arabidopsis root meristem. Plant Methods 15:30

    Article  Google Scholar 

  3. Shapiro BE, Tobin C, Mjolsness E et al (2015) Analysis of cell division patterns in the Arabidopsis shoot apical meristem. Proc Natl Acad Sci U S A 112(15):4815–4820

    Article  CAS  Google Scholar 

  4. Miao H, Guo R, Chen J et al (2019) The gamma-tubulin complex protein GCP6 is crucial for spindle morphogenesis but not essential for microtubule reorganization in Arabidopsis. Proc Natl Acad Sci U S A 116(52):27115–27123

    Article  CAS  Google Scholar 

  5. Mravec J, Petrasek J, Li N et al (2011) Cell plate restricted association of DRP1A and PIN proteins is required for cell polarity establishment in Arabidopsis. Curr Biol 21(12):1055–1060

    Article  CAS  Google Scholar 

  6. Murata T, Sano T, Sasabe M et al (2013) Mechanism of microtubule array expansion in the cytokinetic phragmoplast. Nat Commun 4:1967

    Article  Google Scholar 

  7. Baskin TI, Cande WZ (1990) The structure and function of the mitotic spindle in flowering plants. Annu Rev Plant Physiol Plant Mol Biol 41(1):277–315

    Article  Google Scholar 

  8. Lee YJ, Liu B (2019) Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells. New Phytol 222(4):1705–1718

    Article  CAS  Google Scholar 

  9. Wadsworth P, Lee WL, Murata T et al (2011) Variations on theme: spindle assembly in diverse cells. Protoplasma 248(3):439–446

    Article  Google Scholar 

  10. Yamada M, Goshima G (2017) Mitotic spindle assembly in land plants: molecules and mechanisms. Biology 6(1):6

    Article  Google Scholar 

  11. Euteneuer U, Jackson WT, McIntosh JR (1982) Polarity of spindle microtubules in Haemanthus endosperm. J Cell Biol 94(3):644–653

    Article  CAS  Google Scholar 

  12. Smirnova EA, Bajer AS (1994) Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. Cell Motil Cytoskeleton 27(3):219–233

    Article  CAS  Google Scholar 

  13. Wolniak SM, Larsen PM (1992) Changes in the metaphase transit times and the pattern of sister chromatid separation in stamen hair cells of Tradescantia after treatment with protein phosphatase inhibitors. J Cell Sci 102(Pt 4):691–715

    Article  CAS  Google Scholar 

  14. Cronshaw J, Esau K (1968) Cell division in leaves of Nicotiana. Protoplasma 65(1):1–24

    Article  CAS  Google Scholar 

  15. Xu J, Lee YJ, Liu B (2020) Establishment of a mitotic model system by transient expression of the D-type cyclin in differentiated leaf cells of tobacco (Nicotiana benthamiana). New Phytol 226(4):1213–1220

    Article  CAS  Google Scholar 

  16. Dawe RK, Lowry EG, Gent JI et al (2018) A kinesin-14 motor activates neocentromeres to promote meiotic drive in maize. Cell 173(4):839–850.e18

    Article  CAS  Google Scholar 

  17. Rhoades MM (1950) Meiosis in maize. J Hered 41(3):59–67

    Article  CAS  Google Scholar 

  18. Brown RC, Lemmon BE (2011) Dividing without centrioles: innovative plant microtubule organizing centres organize mitotic spindles in bryophytes, the earliest extant lineages of land plants. AoB Plants 2011:plr028

    Article  Google Scholar 

  19. Brown RC, Lemmon BE, Horio T (2004) Gamma-tubulin localization changes from discrete polar organizers to anastral spindles and phragmoplasts in mitosis of Marchantia polymorpha L. Protoplasma 224(3–4):187–193

    Article  CAS  Google Scholar 

  20. Buschmann H, Holtmannspotter M, Borchers A et al (2016) Microtubule dynamics of the centrosome-like polar organizers from the basal land plant Marchantia polymorpha. New Phytol 209(3):999–1013

    Article  CAS  Google Scholar 

  21. Hiwatashi Y, Obara M, Sato Y et al (2008) Kinesins are indispensable for interdigitation of phragmoplast microtubules in the moss Physcomitrella patens. Plant Cell 20(11):3094–3106

    Article  CAS  Google Scholar 

  22. Fricker M, Runions J, Moore I (2006) Quantitative fluorescence microscopy: from art to science. Annu Rev Plant Biol 57:79–107

    Article  CAS  Google Scholar 

  23. Shaw SL, Ehrhardt DW (2013) Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu Rev Plant Biol 64:351–375

    Article  CAS  Google Scholar 

  24. Vogelmann TC (1993) Plant-Tissue Optics. Annu Rev Plant Physiol Plant Mol Biol 44:231–251

    Article  Google Scholar 

  25. Shaw SL (2006) Imaging the live plant cell. Plant J 45(4):573–598

    Article  CAS  Google Scholar 

  26. Shaw SL, Thoms D, Powers J (2019) Structured illumination approaches for super-resolution in plant cells. Microscopy 68(1):37–44

    Article  CAS  Google Scholar 

  27. Celler K, Fujita M, Kawamura E et al (2016) Microtubules in plant cells: strategies and methods for immunofluorescence, transmission electron microscopy, and live cell imaging. Methods Mol Biol 1365:155–184

    Article  CAS  Google Scholar 

  28. Vos JW, Pieuchot L, Evrard JL et al (2008) The plant TPX2 protein regulates prospindle assembly before nuclear envelope breakdown. Plant Cell 20(10):2783–2797

    Article  CAS  Google Scholar 

  29. Maizel A, von Wangenheim D, Federici F et al (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68(2):377–385

    Article  CAS  Google Scholar 

  30. Marc J, Granger CL, Brincat J et al (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10(11):1927–1940

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  32. Yin K, Ueda M, Takagi H et al (2014) A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis. Plant J 80(3):541–552

    Article  CAS  Google Scholar 

  33. Feijó JA, Moreno N (2004) Imaging plant cells by two-photon excitation. Protoplasma 223(1):1–32

    Article  Google Scholar 

  34. Molines AT, Marion J, Chabout S et al (2018) EB1 contributes to microtubule bundling and organization, along with root growth, in Arabidopsis thaliana. Biol Open 7(8):bio030510

    Article  Google Scholar 

  35. Konopka CA, Bednarek SY (2008) Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53(1):186–196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney L. Shaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shaw, S.L., Siebe, M., Cioffi, T. (2022). Imaging Chambers for Arabidopsis Seedlings for Mitotic Studies. In: Hinchcliffe, E.H. (eds) Mitosis. Methods in Molecular Biology, vol 2415. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1904-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1904-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1903-2

  • Online ISBN: 978-1-0716-1904-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics