Skip to main content

Methods for Investigating Cell Division Mechanisms in C. elegans

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2415))

Abstract

The nematode Caenorhabditis elegans is a widely used model organism for the study of mitotic and meiotic cell division. These self-fertilizing worms are particularly advantageous for such studies because they rapidly reproduce (each worm lays ~250 eggs in only 3–4 days) and the cell division machinery is highly conserved between worms and humans. Worms are also genetically tractable and proteins can be readily depleted using RNA interference (RNAi), allowing for the characterization of protein function in vivo. To assess phenotypes, spindles can be directly visualized within the worm using fluorescent protein tags or embryos can be dissected out of the worm and immunostained. A combination of these techniques allows comprehensive characterization of a protein’s function in a relatively short time span. Here, we describe methods for each of these techniques: RNA interference through feeding, in utero live imaging, in utero fixed imaging, and immunofluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mullen TJ, Davis-Roca AC, Wignall SM (2019) Spindle assembly and chromosome dynamics during oocyte meiosis. Curr Opin Cell Biol 60:53–59. https://doi.org/10.1016/j.ceb.2019.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2(4):280–291

    Article  CAS  Google Scholar 

  3. Severson AF, von Dassow G, Bowerman B (2016) Oocyte meiotic spindle assembly and function. Curr Top Dev Biol 116:65–98. https://doi.org/10.1016/bs.ctdb.2015.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oegema K, Hyman AA (2006) Cell division. WormBook, pp 1–40. https://doi.org/10.1895/wormbook.1.72.1

    Book  Google Scholar 

  5. Nance J, Frokjaer-Jensen C (2019) The Caenorhabditis elegans transgenic toolbox. Genetics 212(4):959–990. https://doi.org/10.1534/genetics.119.301506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Montgomery MK (2004) RNA interference: historical overview and significance. Methods Mol Biol 265:3–21. https://doi.org/10.1385/1-59259-775-0:003

    Article  CAS  PubMed  Google Scholar 

  7. Gonczy P, Echeverri C, Oegema K, Coulson A, Jones SJ, Copley RR, Duperon J, Oegema J, Brehm M, Cassin E, Hannak E, Kirkham M, Pichler S, Flohrs K, Goessen A, Leidel S, Alleaume AM, Martin C, Ozlu N, Bork P, Hyman AA (2000) Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408(6810):331–336

    Article  CAS  Google Scholar 

  8. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408(6810):325–330

    Article  CAS  Google Scholar 

  9. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920):231–237. https://doi.org/10.1038/nature01278

    Article  CAS  PubMed  Google Scholar 

  10. Wignall SM, Villeneuve AM (2009) Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis. Nat Cell Biol 11(7):839–844. https://doi.org/10.1038/ncb1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang L, Ward JD, Cheng Z, Dernburg AF (2015) The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development 142(24):4374–4384. https://doi.org/10.1242/dev.129635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Green RA, Audhya A, Pozniakovsky A, Dammermann A, Pemble H, Monen J, Portier N, Hyman A, Desai A, Oegema K (2008) Expression and imaging of fluorescent proteins in the C. elegans gonad and early embryo. Methods Cell Biol 85:179–218. https://doi.org/10.1016/S0091-679X(08)85009-1

    Article  CAS  PubMed  Google Scholar 

  13. Frokjaer-Jensen C, Davis MW, Ailion M, Jorgensen EM (2012) Improved Mos1-mediated transgenesis in C. elegans. Nat Methods 9(2):117–118. https://doi.org/10.1038/nmeth.1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Frokjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, Grunnet M, Jorgensen EM (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40(11):1375–1383. https://doi.org/10.1038/ng.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10(10):1028–1034. https://doi.org/10.1038/nmeth.2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paix A, Folkmann A, Rasoloson D, Seydoux G (2015) High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201(1):47–54. https://doi.org/10.1534/genetics.115.179382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10(8):741–743. https://doi.org/10.1038/nmeth.2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laband K, Lacroix B, Edwards F, Canman JC, Dumont J (2018) Live imaging of C. elegans oocytes and early embryos. Methods Cell Biol 145:217–236. https://doi.org/10.1016/bs.mcb.2018.03.025

    Article  CAS  PubMed  Google Scholar 

  19. Mullen TJ, Wignall SM (2017) Interplay between microtubule bundling and sorting factors ensures acentriolar spindle stability during C. elegans oocyte meiosis. PLoS Genet 13(9):e1006986. https://doi.org/10.1371/journal.pgen.1006986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wolff ID, Tran MV, Mullen TJ, Villeneuve AM, Wignall SM (2016) Assembly of C. elegans acentrosomal spindles occurs without evident MTOCs and requires microtubule sorting by KLP-18/kinesin-12 and MESP-1. Mol Biol Cell 27(20):3122–3131. https://doi.org/10.1091/mbc.E16-05-0291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA (2001) Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153(6):1209–1226

    Article  CAS  Google Scholar 

  22. Davis-Roca AC, Divekar NS, Ng RK, Wignall SM (2018) Dynamic SUMO remodeling drives a series of critical events during the meiotic divisions in Caenorhabditis elegans. PLoS Genet 14(9):e1007626. https://doi.org/10.1371/journal.pgen.1007626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davis-Roca AC, Muscat CC, Wignall SM (2017) Caenorhabditis elegans oocytes detect meiotic errors in the absence of canonical end-on kinetochore attachments. J Cell Biol 216(5):1243–1253. https://doi.org/10.1083/jcb.201608042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muscat CC, Torre-Santiago KM, Tran MV, Powers JA, Wignall SM (2015) Kinetochore-independent chromosome segregation driven by lateral microtubule bundles. elife 4:e06462. https://doi.org/10.7554/eLife.06462

    Article  PubMed  PubMed Central  Google Scholar 

  25. Divekar NS, Horton HE, Wignall SM (2021) Methods for rapid protein depletion in C. elegans using auxin-inducible degradation. Curr Protoc 1(2):e16. https://doi.org/10.1002/cpz1.16

    Article  CAS  PubMed  Google Scholar 

  26. Martinez MAQ, Matus DQ (2020) Auxin-mediated protein degradation in Caenorhabditis elegans. Bio Protoc 10(8). https://doi.org/10.21769/BioProtoc.3589

  27. Segbert C, Barkus R, Powers J, Strome S, Saxton WM, Bossinger O (2003) KLP-18, a Klp2 kinesin, is required for assembly of acentrosomal meiotic spindles in Caenorhabditis elegans. Mol Biol Cell 14(11):4458–4469

    Article  CAS  Google Scholar 

  28. Wang S, Wu D, Quintin S, Green RA, Cheerambathur DK, Ochoa SD, Desai A, Oegema K (2015) NOCA-1 functions with gamma-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans. elife 4:e08649. https://doi.org/10.7554/eLife.08649

    Article  PubMed  PubMed Central  Google Scholar 

  29. van der Voet M, Berends CW, Perreault A, Nguyen-Ngoc T, Gonczy P, Vidal M, Boxem M, van den Heuvel S (2009) NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Galpha. Nat Cell Biol 11(3):269–277. https://doi.org/10.1038/ncb1834

    Article  CAS  PubMed  Google Scholar 

  30. Stiernagle T (2006) Maintenance of C. elegans. WormBook, pp 1–11

    Google Scholar 

  31. Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PV, Kamath RS, Fraser AG, Ahringer J, Plasterk RH (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1(1):E12

    Article  Google Scholar 

  32. Zipperlen P, Fraser AG, Kamath RS, Martinez-Campos M, Ahringer J (2001) Roles for 147 embryonic lethal genes on C. elegans chromosome I identified by RNA interference and video microscopy. EMBO J 20(15):3984–3992

    Article  CAS  Google Scholar 

  33. Hayashi M, Mlynarczyk-Evans S, Villeneuve AM (2010) The synaptonemal complex shapes the crossover landscape through cooperative assembly, crossover promotion and crossover inhibition during Caenorhabditis elegans meiosis. Genetics 186(1):45–58. https://doi.org/10.1534/genetics.110.115501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Praitis V (2006) Creation of transgenic lines using microparticle bombardment methods. Methods Mol Biol 351:93–107. https://doi.org/10.1385/1-59745-151-7:93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Wignall Lab members past and present for their contributions in developing these protocols, especially Gabriel Cavin-Meza, Amanda Davis-Roca, Carissa Heath, Jeremy Hollis, Hannah Horton, Tim Mullen, Christina Muscat, and Michael Tran. This work was supported by American Heart Association Predoctoral Fellowship 17PRE33440016 (to I.D.W.), NIH/NIGMS Molecular Biophysics Training Grant T32GM008382 (to I.D.W.), and NIH R01GM124354 (to S.M.W.). Microscopy was performed at the Biological Imaging Facility at Northwestern University, supported by the Chemistry for Life Processes Institute, the NU Office for Research, the Department of Molecular Biosciences, and the Rice Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah M. Wignall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wolff, I.D., Divekar, N.S., Wignall, S.M. (2022). Methods for Investigating Cell Division Mechanisms in C. elegans. In: Hinchcliffe, E.H. (eds) Mitosis. Methods in Molecular Biology, vol 2415. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1904-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1904-9_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1903-2

  • Online ISBN: 978-1-0716-1904-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics