Skip to main content

Low-Energy Electron Irradiation (LEEI) for the Generation of Inactivated Bacterial Vaccines

Part of the Methods in Molecular Biology book series (MIMB,volume 2414)

Abstract

Vaccines consisting of whole inactivated bacteria (bacterins) are generated by incubation of the pathogen with chemicals. This is a time-consuming procedure which may lead to less immunogenic material, as critical antigenic structures can be altered by chemical modification. A promising alternative approach is low-energy electron irradiation (LEEI). Like other types of ionizing radiation, it mainly acts by destroying nucleic acids but causes less damage to structural components like proteins. As the electrons have a limited penetration depth, LEEI is currently used for sterilization of surfaces. The inactivation of pathogens in liquids requires irradiation of the culture in a thin film to ensure complete penetration. Here, we describe two approaches for the irradiation of bacterial suspensions in a research scale. After confirmation of inactivation, the material can be directly used for vaccination, without any purification steps.

Key words

  • Bacterial inactivation
  • Low-energy electron irradiation
  • LEEI
  • Bacterial vaccine
  • Bacterin
  • Electron beam

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-1900-1_7
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-1900-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hoelzer K, Bielke L, Blake DP et al (2018) Vaccines as alternatives to antibiotics for food producing animals. Part 1: challenges and needs. Vet Res 49:1–10. https://doi.org/10.1186/s13567-018-0560-8

    CrossRef  CAS  Google Scholar 

  2. Babb R, Chen A, Hirst TR et al (2016) Intranasal vaccination with γ-irradiated Streptococcus pneumoniae whole-cell vaccine provides serotype-independent protection mediated by B-cells and innate IL-17 responses. Clin Sci 130:697–710. https://doi.org/10.1042/CS20150699

    CrossRef  CAS  Google Scholar 

  3. Bordin AI, Pillai SD, Brake C et al (2014) Immunogenicity of an electron beam inactivated Rhodococcus equi vaccine in neonatal foals. PLoS One 9:e105367. https://doi.org/10.1371/journal.pone.0105367

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jwa MY, Jeong S, Ko EB et al (2018) Gamma-irradiation of Streptococcus pneumoniae for the use as an immunogenic whole cell vaccine. J Microbiol 56:579–585. https://doi.org/10.1007/s12275-018-8347-1

    CrossRef  CAS  PubMed  Google Scholar 

  5. Alizadeh E, Orlando TM, Sanche L (2015) Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu Rev Phys Chem 66:379–398. https://doi.org/10.1146/annurev-physchem-040513-103605

    CrossRef  CAS  PubMed  Google Scholar 

  6. Brown F (1995) Formaldehyde as an inactivant. Vaccine 13:231. https://doi.org/10.1016/0264-410x(95)93142-v

    CrossRef  CAS  PubMed  Google Scholar 

  7. Delrue I, Verzele D, Madder A et al (2012) Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert Rev Vaccines 11:695–719. https://doi.org/10.1586/erv.12.38

    CrossRef  CAS  PubMed  Google Scholar 

  8. Fertey J, Thoma M, Beckmann J et al (2020) Automated application of low energy electron irradiation enables inactivation of pathogen- and cell-containing liquids in biomedical research and production facilities. Sci Rep 10:12786. https://doi.org/10.1038/s41598-020-69347-7

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Espinosa AC, Jesudhasan P, Arredondo R et al (2012) Quantifying the reduction in potential health risks by determining the sensitivity of poliovirus type 1 chat strain and rotavirus SA-11 to electron beam irradiation of iceberg lettuce and spinach. Appl Environ Microbiol 78:988–993. https://doi.org/10.1128/AEM.06927-11

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Skowron K, Paluszak Z, Olszewska H et al (2014) Effectiveness of high energy electron beam against spore forming bacteria and viruses in slurry. Radiat Phys Chem 101:36–40. https://doi.org/10.1016/j.radphyschem.2014.04.001

    CrossRef  CAS  Google Scholar 

  11. IAEA Safety standards (2010) Radiation safety of gamma, electron and x-ray irradiation facilities. IAEA Safety standards series. https://www-pub.iaea.org/MTCD/publications/PDF/Pub1454_web.pdf

  12. Silindir M, Özer AY (2009) Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. FABAD J Pharm Sci 34:43–53

    Google Scholar 

  13. Fertey J, Bayer L, Grunwald T et al (2016) Pathogens inactivated by low-energy-electron irradiation maintain antigenic properties and induce protective immune responses. Viruses 8:319. https://doi.org/10.3390/v8110319

    CrossRef  CAS  PubMed Central  Google Scholar 

  14. Bayer L, Fertey J, Ulbert S et al (2018) Immunization with an adjuvanted low-energy electron irradiation inactivated respiratory syncytial virus vaccine shows immunoprotective activity in mice. Vaccine 36:1561–1569. https://doi.org/10.1016/j.vaccine.2018.02.014

    CrossRef  CAS  PubMed  Google Scholar 

  15. Fertey J, Bayer L, Kähl S et al (2020) Low-energy electron irradiation efficiently inactivates the gram-negative pathogen Rodentibacter pneumotropicus-A new method for the generation of bacterial vaccines with increased efficacy. Vaccines 8:113. https://doi.org/10.3390/vaccines8010113

    CrossRef  CAS  PubMed Central  Google Scholar 

  16. Thabet A, Schmäschke R, Fertey J et al (2019) Eimeria tenella oocysts attenuated by low energy electron irradiation (LEEI) induce protection against challenge infection in chickens. Vet Parasitol 266:18–26. https://doi.org/10.1016/j.vetpar.2019.01.001

    CrossRef  PubMed  Google Scholar 

  17. Fornefett J, Krause J, Klose K et al (2018) Comparative analysis of humoral immune responses and pathologies of BALB/c and C57BL/6 wildtype mice experimentally infected with a highly virulent Rodentibacter pneumotropicus (Pasteurella pneumotropica) strain. BMC Microbiol 18:45. https://doi.org/10.1186/s12866-018-1186-8

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gotzmann G, Portillo J, Wronski S et al (2018) Low-energy electron-beam treatment as alternative for on-site sterilization of highly functionalized medical products – a feasibility study. Radiat Phys Chem 150:9–19. https://doi.org/10.1016/j.radphyschem.2018.04.008

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Fertey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Fertey, J., Standfest, B., Beckmann, J., Thoma, M., Grunwald, T., Ulbert, S. (2022). Low-Energy Electron Irradiation (LEEI) for the Generation of Inactivated Bacterial Vaccines. In: Bidmos, F., Bossé, J., Langford, P. (eds) Bacterial Vaccines. Methods in Molecular Biology, vol 2414. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1900-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1900-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1899-8

  • Online ISBN: 978-1-0716-1900-1

  • eBook Packages: Springer Protocols