Golding H, Khurana S, Zaitseva M (2018) What is the predictive value of animal models for vaccine efficacy in humans? The importance of bridging studies and species--independent correlates of protection. Cold Spring Harb Perspect Biol 10(4):a028902. https://doi.org/10.1101/cshperspect.a028902
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole--genome sequencing. Science 287(5459):1816–1820. https://doi.org/10.1126/science.287.5459.1816
CAS
CrossRef
Google Scholar
Borrow R, Carlone GM, Rosenstein N et al (2006) Neisseria meningitidis group B correlates of protection and assay standardization—international meeting report Emory University, Atlanta, Georgia, United States, 16–17 march 2005. Vaccine 24(24):5093–5107. https://doi.org/10.1016/j.vaccine.2006.03.091
CAS
CrossRef
PubMed
Google Scholar
Romero--Steiner S, Frasch CE, Carlone G et al (2006) Use of Opsonophagocytosis for serological evaluation of pneumococcal vaccines. Clin Vaccine Immunol 13(2):165–169. https://doi.org/10.1128/CVI.13.2.165-169.2006
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ercoli G, Fernandes VE, Chung WY et al (2018) Intracellular replication of Streptococcus pneumoniae inside splenic macrophages serves as a reservoir for septicaemia. Nat Microbiol 3(5):600–610. https://doi.org/10.1038/s41564-018-0147-1
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Chung WY, Wanford JJ, Kumar R et al (2019) An ex vivo porcine spleen perfusion as a model of bacterial sepsis. ALTEX 36(1):29–38. https://doi.org/10.14573/altex.1805131
CrossRef
PubMed
Google Scholar
Kadioglu A, Weiser JN, Paton JC et al (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6(4):288–301. https://doi.org/10.1038/nrmicro1871
CAS
CrossRef
PubMed
Google Scholar
Chiavolini D, Pozzi G, Ricci S (2008) Animal models of Streptococcus pneumoniae disease. Clin Microbiol Rev 21(4):666–685. https://doi.org/10.1128/CMR.00012-08
CrossRef
PubMed
PubMed Central
Google Scholar
Kadioglu A, Cuppone AM, Trappetti C et al (2011) Sex--based differences in susceptibility to respiratory and systemic pneumococcal disease in mice. J Infect Dis 204(12):1971–1979. https://doi.org/10.1093/infdis/jir657
CAS
CrossRef
PubMed
Google Scholar
Gerlini A, Colomba L, Furi L et al (2014) The role of host and microbial factors in the pathogenesis of pneumococcal Bacteraemia arising from a single bacterial cell bottleneck. PLoS Pathog 10(3):e1004026. https://doi.org/10.1371/journal.ppat.1004026
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Iannelli F, Chiavolini D, Ricci S et al (2004) Pneumococcal surface protein C contributes to sepsis caused by Streptococcus pneumoniae in mice. Infect Immun 72(5):3077–3080. https://doi.org/10.1128/iai.72.5.3077-3080.2004
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Oggioni MR, Trappetti C, Kadioglu A et al (2006) Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 61(5):1196–1210. https://doi.org/10.1111/j.1365-2958.2006.05310.x
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kerr AR, Paterson GK, McCluskey J et al (2006) The contribution of PspC to pneumococcal virulence varies between strains and is accomplished by both complement evasion and complement--independent mechanisms. Infect Immun 74(9):5319–5324. https://doi.org/10.1128/IAI.00543-06
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Manso AS, Chai MH, Atack JM et al (2014) A random six--phase switch regulates pneumococcal virulence via global epigenetic changes. Nat Commun 5(1):5055. https://doi.org/10.1038/ncomms6055
CAS
CrossRef
PubMed
Google Scholar
Ricci S, Janulczyk R, Gerlini A et al (2011) The factor H--binding fragment of PspC as a vaccine antigen for the induction of protective humoral immunity against experimental pneumococcal sepsis. Vaccine 29(46):8241–8249. https://doi.org/10.1016/j.vaccine.2011.08.119
CAS
CrossRef
PubMed
Google Scholar
Rukke HV, Kalluru RS, Repnik U et al (2014) Protective role of the capsule and impact of serotype 4 switching on Streptococcus mitis. Infect Immun 82(9):3790–3801. https://doi.org/10.1128/IAI.01840-14
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Yue F, Cheng Y, Breschi A et al (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature (London) 515(7527):355–364. https://doi.org/10.1038/nature13992
CAS
CrossRef
PubMed Central
Google Scholar
Steiniger BS (2015) Human spleen microanatomy: why mice do not suffice. Immunology 145(3):334–346. https://doi.org/10.1111/imm.12469
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738. https://doi.org/10.4049/jimmunol.172.5.2731
CAS
CrossRef
PubMed
Google Scholar
Chung WY, Gravante G, Al-Leswas D et al (2013) The development of a multiorgan ex vivo perfused model: results with the porcine liver--kidney circuit over 24 h. Artif Organs 37(5):457–466. https://doi.org/10.1111/aor.12003
CAS
CrossRef
PubMed
Google Scholar
Daniel CR, Labens R, Argyle D et al (2018) Extracorporeal perfusion of isolated organs of large animals—bridging the gap between in vitro and in vivo studies. ALTEX 35(1):77–98. https://doi.org/10.14573/altex.1611291
CrossRef
PubMed
Google Scholar
Meurens F, Summerfield A, Nauwynck H et al (2012) The pig: a model for human infectious diseases. Trends Microbiol 20(1):50–57. https://doi.org/10.1016/j.tim.2011.11.002
CAS
CrossRef
PubMed
Google Scholar
Ramos-Vara JA, Miller MA (2013) When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry--the red, brown, and blue technique. Vet Pathol 51(1):42–87. https://doi.org/10.1177/0300985813505879
CAS
CrossRef
PubMed
Google Scholar
Butler AJ, Rees MA, Wight DGD et al (2002) Successful extracorporeal porcine liver perfusion for 72 h. Transplantation 73(8):1212–1218
CAS
CrossRef
Google Scholar