Skip to main content

Analyzing Macrophage Infection at the Organ Level

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2414))

Abstract

Classical in vivo infection models are oftentimes associated with speculation due to the many physiological factors that are unseen or not accounted for when analyzing experimental outputs, especially when solely utilizing the classic approach of tissue-derived colony-forming unit (CFU) enumeration. To better understand the steps and natural progression of bacterial infection, the pathophysiology of individual organs with which the bacteria interact in their natural course of infection must be considered. In this case, it is not only important to isolate organs as much as possible from additional physiological processes, but to also consider the dynamics of the bacteria at the cellular level within these organs of interest. Here, we describe in detail two models, ex vivo porcine liver and spleen coperfusion and a murine infection model, and the numerous associated experimental outputs produced by these models that can be taken and used together to investigate the pathogen–host interactions within tissues in depth.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Golding H, Khurana S, Zaitseva M (2018) What is the predictive value of animal models for vaccine efficacy in humans? The importance of bridging studies and species--independent correlates of protection. Cold Spring Harb Perspect Biol 10(4):a028902. https://doi.org/10.1101/cshperspect.a028902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole--genome sequencing. Science 287(5459):1816–1820. https://doi.org/10.1126/science.287.5459.1816

    Article  CAS  Google Scholar 

  3. Borrow R, Carlone GM, Rosenstein N et al (2006) Neisseria meningitidis group B correlates of protection and assay standardization—international meeting report Emory University, Atlanta, Georgia, United States, 16–17 march 2005. Vaccine 24(24):5093–5107. https://doi.org/10.1016/j.vaccine.2006.03.091

    Article  CAS  PubMed  Google Scholar 

  4. Romero--Steiner S, Frasch CE, Carlone G et al (2006) Use of Opsonophagocytosis for serological evaluation of pneumococcal vaccines. Clin Vaccine Immunol 13(2):165–169. https://doi.org/10.1128/CVI.13.2.165-169.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ercoli G, Fernandes VE, Chung WY et al (2018) Intracellular replication of Streptococcus pneumoniae inside splenic macrophages serves as a reservoir for septicaemia. Nat Microbiol 3(5):600–610. https://doi.org/10.1038/s41564-018-0147-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chung WY, Wanford JJ, Kumar R et al (2019) An ex vivo porcine spleen perfusion as a model of bacterial sepsis. ALTEX 36(1):29–38. https://doi.org/10.14573/altex.1805131

    Article  PubMed  Google Scholar 

  7. Kadioglu A, Weiser JN, Paton JC et al (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6(4):288–301. https://doi.org/10.1038/nrmicro1871

    Article  CAS  PubMed  Google Scholar 

  8. Chiavolini D, Pozzi G, Ricci S (2008) Animal models of Streptococcus pneumoniae disease. Clin Microbiol Rev 21(4):666–685. https://doi.org/10.1128/CMR.00012-08

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kadioglu A, Cuppone AM, Trappetti C et al (2011) Sex--based differences in susceptibility to respiratory and systemic pneumococcal disease in mice. J Infect Dis 204(12):1971–1979. https://doi.org/10.1093/infdis/jir657

    Article  CAS  PubMed  Google Scholar 

  10. Gerlini A, Colomba L, Furi L et al (2014) The role of host and microbial factors in the pathogenesis of pneumococcal Bacteraemia arising from a single bacterial cell bottleneck. PLoS Pathog 10(3):e1004026. https://doi.org/10.1371/journal.ppat.1004026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iannelli F, Chiavolini D, Ricci S et al (2004) Pneumococcal surface protein C contributes to sepsis caused by Streptococcus pneumoniae in mice. Infect Immun 72(5):3077–3080. https://doi.org/10.1128/iai.72.5.3077-3080.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oggioni MR, Trappetti C, Kadioglu A et al (2006) Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 61(5):1196–1210. https://doi.org/10.1111/j.1365-2958.2006.05310.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kerr AR, Paterson GK, McCluskey J et al (2006) The contribution of PspC to pneumococcal virulence varies between strains and is accomplished by both complement evasion and complement--independent mechanisms. Infect Immun 74(9):5319–5324. https://doi.org/10.1128/IAI.00543-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Manso AS, Chai MH, Atack JM et al (2014) A random six--phase switch regulates pneumococcal virulence via global epigenetic changes. Nat Commun 5(1):5055. https://doi.org/10.1038/ncomms6055

    Article  CAS  PubMed  Google Scholar 

  15. Ricci S, Janulczyk R, Gerlini A et al (2011) The factor H--binding fragment of PspC as a vaccine antigen for the induction of protective humoral immunity against experimental pneumococcal sepsis. Vaccine 29(46):8241–8249. https://doi.org/10.1016/j.vaccine.2011.08.119

    Article  CAS  PubMed  Google Scholar 

  16. Rukke HV, Kalluru RS, Repnik U et al (2014) Protective role of the capsule and impact of serotype 4 switching on Streptococcus mitis. Infect Immun 82(9):3790–3801. https://doi.org/10.1128/IAI.01840-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yue F, Cheng Y, Breschi A et al (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature (London) 515(7527):355–364. https://doi.org/10.1038/nature13992

    Article  CAS  PubMed Central  Google Scholar 

  18. Steiniger BS (2015) Human spleen microanatomy: why mice do not suffice. Immunology 145(3):334–346. https://doi.org/10.1111/imm.12469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738. https://doi.org/10.4049/jimmunol.172.5.2731

    Article  CAS  PubMed  Google Scholar 

  20. Chung WY, Gravante G, Al-Leswas D et al (2013) The development of a multiorgan ex vivo perfused model: results with the porcine liver--kidney circuit over 24 h. Artif Organs 37(5):457–466. https://doi.org/10.1111/aor.12003

    Article  CAS  PubMed  Google Scholar 

  21. Daniel CR, Labens R, Argyle D et al (2018) Extracorporeal perfusion of isolated organs of large animals—bridging the gap between in vitro and in vivo studies. ALTEX 35(1):77–98. https://doi.org/10.14573/altex.1611291

    Article  PubMed  Google Scholar 

  22. Meurens F, Summerfield A, Nauwynck H et al (2012) The pig: a model for human infectious diseases. Trends Microbiol 20(1):50–57. https://doi.org/10.1016/j.tim.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  23. Ramos-Vara JA, Miller MA (2013) When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry--the red, brown, and blue technique. Vet Pathol 51(1):42–87. https://doi.org/10.1177/0300985813505879

    Article  CAS  PubMed  Google Scholar 

  24. Butler AJ, Rees MA, Wight DGD et al (2002) Successful extracorporeal porcine liver perfusion for 72 h. Transplantation 73(8):1212–1218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank John Isherwood and Rohan Kumar for help with the perfusion of the porcine organs at explant, the staff of Joseph Morris Butchers, and Sarah Glenn and the staff of the Leicester Preclinical Research Facility for support with the mouse experiments. The grant was in part supported by a collaboration agreement with the University of Oxford and grants from the MRC MR/M003078/1 and BBSRC BB/S507052/1 to MRO. ZJ is funded by BBSRC BB/S507052/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco R. Oggioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hames, R.G. et al. (2022). Analyzing Macrophage Infection at the Organ Level. In: Bidmos, F., Bossé, J., Langford, P. (eds) Bacterial Vaccines. Methods in Molecular Biology, vol 2414. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1900-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1900-1_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1899-8

  • Online ISBN: 978-1-0716-1900-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics