Skip to main content

Membrane Vesicles Produced by Shewanella vesiculosa HM13 as a Prospective Platform for Secretory Production of Heterologous Proteins at Low Temperatures

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2414))

Abstract

Extracellular membrane vesicles (EMVs) produced by Gram-negative bacteria are useful as a vaccine platform. During growth in broth at 18 °C, Shewanella vesiculosa HM13 produces a large number of EMVs that contain a 49-kDa major cargo protein, named P49. Enhanced green fluorescent protein fused to the C-terminus of P49 is delivered to EMVs, suggesting that P49 is useful as a carrier to target foreign proteins to EMVs for production of artificial EMVs with desired functions. This method is potentially useful for the preparation of designed vaccines and is described in detail in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13:605–619. https://doi.org/10.1038/nrmicro3525

  2. Toyofuku M, Tashiro Y, Hasegawa Y et al (2015) Bacterial membrane vesicles, an overlooked environmental colloid: biology, environmental perspectives and applications. Adv Colloid Interf Sci 226:65–77. https://doi.org/10.1016/j.cis.2015.08.013

    Article  CAS  Google Scholar 

  3. Nagakubo T, Nomura N, Toyofuku M (2020) Cracking open bacterial membrane vesicles. Front Microbiol 10:3026. https://doi.org/10.3389/fmicb.2019.03026

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anand D, Chaudhuri A (2016) Bacterial outer membrane vesicles: new insights and applications. Mol Membr Biol 33:125–137. https://doi.org/10.1080/09687688.2017.1400602

    Article  CAS  PubMed  Google Scholar 

  5. McCarthy PC, Sharyan A, Sheikhi Moghaddam L (2018) Meningococcal vaccines: current status and emerging strategies. Vaccines (Basel) 6:12. https://doi.org/10.3390/vaccines6010012

    Article  CAS  Google Scholar 

  6. Gerritzen MJH, Martens DE, Wijffels RH et al (2017) Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol Adv 35:565–574. https://doi.org/10.1016/j.biotechadv.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  7. Irene C, Fantappiè L, Caproni E et al (2019) Bacterial outer membrane vesicles engineered with lipidated antigens as a platform for Staphylococcus aureus vaccine. Proc Natl Acad Sci U S A 116:21780–21788. https://doi.org/10.1073/pnas.1905112116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen C, Kawamoto J, Kawai S et al (2020) Isolation of a novel bacterial strain capable of producing abundant extracellular membrane vesicles carrying a single major cargo protein and analysis of its transport mechanism. Front Microbiol 10:3001. https://doi.org/10.3389/fmicb.2019.03001

  9. Casillo A, Di Guida R, Carillo S et al (2019) Structural elucidation of a novel lipooligosaccharide from the cold-adapted bacterium OMVs producer Shewanella sp. HM13. Mar Drugs 17:34. https://doi.org/10.3390/md17010034

    Article  CAS  PubMed Central  Google Scholar 

  10. Kamasaka K, Kawamoto J, Chen C et al (2020) Genetic characterization and functional implications of the gene cluster for selective protein transport to extracellular membrane vesicles of Shewanella vesiculosa HM13. Biochem Biophys Res Commun 526:525–531. https://doi.org/10.1016/j.bbrc.2020.03.125

    Article  CAS  PubMed  Google Scholar 

  11. Di Guida R, Casillo A, Yokoyama F et al (2020) Detailed structural characterization of the lipooligosaccharide from the extracellular membrane vesicles of Shewanella vesiculosa HM13. Mar Drugs 18:231. https://doi.org/10.3390/md18050231

    Article  CAS  PubMed Central  Google Scholar 

  12. Taniguchi H, Aramaki H, Nikaido Y et al (1996) Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis. FEMS Microbiol Lett 144:103–108. https://doi.org/10.1111/j.1574-6968.1996.tb08515.x

  13. Hoffmann A, Thimm T, Dröge M et al (1998) Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola). Appl Environ Microbiol 64:2652–2659. https://doi.org/10.1128/AEM.64.7.2652-2659.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alexeyev MF (1999) The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of Gram-negative bacteria. Biotechniques 26:824–826, 828. https://doi.org/10.2144/99265bm05

  15. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28. https://doi.org/10.1016/0378-1119(90)90336-P

    Article  CAS  PubMed  Google Scholar 

  16. Hellens RP, Edwards EA, Leyland NR et al (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832. https://doi.org/10.1023/a:1006496308160

  17. Chutkan H, MacDonald I, Manning A, Kuehn MJ (2013) Quantitative and qualitative preparations of bacterial outer membrane vesicles. Methods Mol Biol 966:259–272. https://doi.org/10.1007/978-1-62703-245-2_16

  18. Komatsu S (2015) Western blotting using PVDF membranes and its downstream applications. Methods Mol Biol 1312:227–236. https://doi.org/10.1007/978-1-4939-2694-7_24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI (JP17H04598, JP18K19178, and JP20K20570 to TK and JP16K14885 and JP20K05786 to JK) and a grant from the Institute for Fermentation, Osaka (L-2019-2-012 to TK). TEM observations were performed in collaboration with the Analysis and Development System for Advanced Materials (ADAM) at the Research Institute for Sustainable Humanosphere, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Kurihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kawamoto, J., Kurihara, T. (2022). Membrane Vesicles Produced by Shewanella vesiculosa HM13 as a Prospective Platform for Secretory Production of Heterologous Proteins at Low Temperatures. In: Bidmos, F., Bossé, J., Langford, P. (eds) Bacterial Vaccines. Methods in Molecular Biology, vol 2414. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1900-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1900-1_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1899-8

  • Online ISBN: 978-1-0716-1900-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics