Skip to main content

Challenges in Veterinary Vaccine Development

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2411))

Abstract

Animals provide food and clothing in addition to other value-added products. Changes in diet and lifestyle have increased the consumption and the use of animal products. Infectious diseases in animals are a major threat to global animal health and its welfare; their effective control is crucial for agronomic health, for safeguarding food security and also alleviating rural poverty. Development of vaccines has led to increased production of healthy poultry, livestock, and fish. Animal production increases have alleviated food insecurity. In addition, development of effective vaccines has led to healthier companion animals. However, challenges remain including climate change that has led to enhancement in vectors and pathogens that may lead to emergent diseases in animals. Preventing transmission of emerging infectious diseases at the animal–human interface is critically important for protecting the world population from epizootics and pandemics. Hence, there is a need to develop new vaccines to prevent diseases in animals. This review describes the broad challenges to be considered in the development of vaccines for animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holzer B, Hodgson S, Logan N, Willett B, Baron MD (2016) Protection of cattle against rinderpest by vaccination with wild-type but not attenuated strains of Peste des Petits ruminants virus. J Virol 90:5152–5162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roberts KE, Hadfield JD, Sharma MD, Longdon B (2018) Changes in temperature alter the potential outcomes of virus host shifts. PLoS Pathog 14(10):e1007185

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thomas S (2020) The structure of the membrane protein of SARS-CoV-2 resembles the sugar transporter SemiSWEET. Pathog Immun 5:342–363

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lau S, Luk H, Wong A (2020) Possible bat origin of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis 26:1542–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koopmans M (2021) SARS-CoV-2 and the human-animal interface: outbreaks on mink farms. Lancet Infect Dis 21(1):18–19

    Article  CAS  PubMed  Google Scholar 

  6. Larsen HD, Fonager J, Lomholt FK, Dalby T, Benedetti G, Kristensen B, Urth TR, Rasmussen M, Lassaunière R, Rasmussen TB, Strandbygaard B, Lohse L, Chaine M, Møller KL, Berthelsen AN, Nørgaard SK, Sönksen UW, Boklund AE, Hammer AS, Belsham GJ, Krause TG, Mortensen S, Bøtner A, Fomsgaard A, Mølbak K (2021) Preliminary report of an outbreak of SARS-CoV-2 in mink and mink farmers associated with community spread, Denmark, June to November 2020. Euro Surveill 26(5):2100009

    Article  CAS  PubMed Central  Google Scholar 

  7. Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, van der Spek A, Tolsma P, Rietveld A, Brouwer M, Bouwmeester-Vincken N, Harders F, Hakze-van der Honing R, Wegdam-Blans MCA, Bouwstra RJ, GeurtsvanKessel C, van der Eijk AA, Velkers FC, Smit LAM, Stegeman A, van der Poel WHM, Koopmans MPG (2021) Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371(6525):172–177

    Article  CAS  PubMed  Google Scholar 

  8. McAloose D, Laverack M, Wang L, Killian ML, Caserta LC, Yuan F, Mitchell PK, Queen K, Mauldin MR, Cronk BD, Bartlett SL, Sykes JM, Zec S, Stokol T, Ingerman K, Delaney MA, Fredrickson R, Ivančić M, Jenkins-Moore M, Mozingo K, Franzen K, Bergeson NH, Goodman L, Wang H, Fang Y, Olmstead C, McCann C, Thomas P, Goodrich E, Elvinger F, Smith DC, Tong S, Slavinski S, Calle PP, Terio K, Torchetti MK, Diel DG (2020) From people to Panthera: natural SARS-CoV-2 infection in tigers and lions at the Bronx zoo. mBio 11(5):e02220-20

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL (2020) Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583:834–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B (2020) Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 368:1016–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. WHO (2020). https://www.who.int/csr/don/06-november-2020-mink-associated-sars-cov2-denmark/en/

  12. Cao Y, Li D (2013) Impact of increased demand for animal protein products in Asian countries: implications on global food security. Anim Front 3:48–55

    Article  Google Scholar 

  13. Collingwood C, Kemmett K, Williams N, Wigley P (2014) Is the concept of avian pathogenic Escherichia coli as a single pathotype fundamentally flawed? Front Vet Sci 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guabiraba R, Schouler C (2015) Avian colibacillosis: still many black holes. FEMS Microbiol Lett 362(15):fnv118

    Article  PubMed  Google Scholar 

  15. Linhoss JE (2020) Diseases of poultry. http://extension.msstate.edu/agriculture/livestock/poultry/diseases-poultry

  16. Ghunaim H, Abu-Madi MA, Kariyawasam S (2014) Advances in vaccination against avian pathogenic Escherichia coli respiratory disease: potentials and limitations. Vet Microbiol 172(1–2):13–22

    Article  PubMed  Google Scholar 

  17. Ishfaq M, Hu W, Khan M, Ahmad I, Guo W, Li J (2020) Current status of vaccine research, development, and challenges of vaccines for Mycoplasma gallisepticum. Poult Sci 99(9):4195–4202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen C, Li J, Zhang W (2020) Mycoplasma gallisepticum triggers immune damage in the chicken thymus by activating the TLR-2/MyD88/NF-κB signaling pathway and NLRP3 inflammasome. Vet Res 51:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leigh SA, Evans JD, Collier SD, Branton SL (2018) The impact of vaccination route on Mycoplasma gallisepticum vaccine efficacy. Poult Sci 97(9):3072–3075

    Article  CAS  PubMed  Google Scholar 

  20. Mbuthia PG, Njagi LW, Nyaga PN, Bebora LC, Minga U, Kamundia J, Olsen JE (2008) Pasteurella multocida in scavenging family chickens and ducks: carrier status, age susceptibility and transmission between species. Avian Pathol 37(1):51–57

    Article  CAS  PubMed  Google Scholar 

  21. Sander JE (2019) Fowl cholera. Merck veterinary manual

    Google Scholar 

  22. Gong Q, Qu N, Niu MF, Qin CL (2016) Evaluation of immunogenicity and protective efficacy of recombinant ptfA of avian Pasteurella multocida. Iran J Vet Res 17(2):84–88

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hargis BM (2014) Overview of necrotic enteritis in poultry. Merck veterinary manual

    Google Scholar 

  24. Kulkarni RR, Parreira VR, Sharif S, Prescott JF (2007) Immunization of broiler chickens against Clostridium perfringens-induced necrotic enteritis. Clin Vaccine Immunol 14(9):1070–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mot D, Timbermont L, Haesebrouck F, Ducatelle R, Van Immerseel F (2014) Progress and problems in vaccination against necrotic enteritis in broiler chickens. Avian Pathol 43(4):290–300

    Article  CAS  PubMed  Google Scholar 

  26. Otalora RE (2020) Ulcerative enteritis in poultry. Merck veterinary manual

    Google Scholar 

  27. Yeakel SD (2019) Fowl typhoid. Merck veterinary manual

    Google Scholar 

  28. Yeakel SD (2019) Pullorum disease in poultry. Merck veterinary manual

    Google Scholar 

  29. Abdul-Aziz T (2019) Botulism in poultry. Merck veterinary manual

    Google Scholar 

  30. Sander JE (2019) Omphalitis in poultry. Merck veterinary manual

    Google Scholar 

  31. Wakenell PS (2020) Erysipelas in poultry. Merck veterinary manual

    Google Scholar 

  32. Morchón R, Carretón E, González-Miguel J, Mellado-Hernández I (2012) Heartworm disease (Dirofilaria immitis) and their vectors in Europe - new distribution trends. Front Physiol 3:196

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30(12–13):1217–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Innes EA, Bartley PM, Maley S, Katzer F, Buxton D (2009) Veterinary vaccines against Toxoplasma gondii. Mem Inst Oswaldo Cruz 104(2):246–251

    Article  CAS  PubMed  Google Scholar 

  35. Mateus-Pinilla NE, Dubey JP, Choromanski L, Weigel RM (1999) A field trial of the effectiveness of a feline Toxoplasma gondii vaccine in reducing T. gondii exposure for swine. J Parasitol 85:855–860

    Article  CAS  PubMed  Google Scholar 

  36. Patton S (2013) Overview of giardiasis. Merck manual

    Google Scholar 

  37. Serradell MC, Saura A, Rupil LL, Gargantini PR, Faya MI, Furlan PJ, Lujan HD (2016) Vaccination of domestic animals with a novel oral vaccine prevents giardia infections, alleviates signs of giardiasis and reduces transmission to humans. NPJ Vaccines 1:16018

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tornquist SJ, Boeder L, Rios-Phillips C, Alarcon V (2010) Prevalence of Mycoplasma haemolamae infection in Peruvian and Chilean llamas and alpacas. J Vet Diagn Investig 22(5):766–769

    Article  Google Scholar 

  39. Viesselmann LC, Videla R, Schaefer J, Chapman A, Wyrosdick H, Schaefer DMW (2019) Mycoplasma haemolamae and intestinal parasite relationships with erythrocyte variables in clinically healthy alpacas and llamas. J Vet Intern Med 33(5):2336–2342

    Article  PubMed  PubMed Central  Google Scholar 

  40. Walz PH, Chamorro MF, Falkenberg SM, Passler T, van der Meer F, Woolums AR (2020) Bovine viral diarrhea virus: an updated American College of Veterinary Internal Medicine consensus statement with focus on virus biology, hosts, immunosuppression, and vaccination. J Vet Intern Med 34(5):1690–1706

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dorji T, Roder W, Sijiu Y (2003) Disease in the yak. In: The yak, 2nd edn. Regional Office for Asia and the Pacific Food and Agriculture Organization of the United Nations, Bangkok

    Google Scholar 

  42. Kant N, Kulshreshtha P, Singh R, Mal A, Dwivedi A, Ahuja R, Mehra R, Tehlan M, Ahmed P, Kaushik S, Shipra, Kumar S, Mohammad A, Shukla S, Singh D, Bhatnagar R (2018) A study to identify the practices of the buffalo keepers which inadvertently lead to the spread of brucellosis in Delhi. BMC Vet Res 14(1):329

    Article  PubMed  PubMed Central  Google Scholar 

  43. Villanueva MA, Mingala CN, Tubalinal GAS, Gaban PBV, Nakajima C, Suzuki Y (2018) Emerging infectious diseases in water buffalo: an economic and public health concern. In: Emerging infectious diseases in water buffalo an economic and public health concern. IntechOpen, London, 54 pp

    Chapter  Google Scholar 

  44. Muskens J, van Zijderveld F, Eger A, Bakker D (2002) Evaluation of the long-term immune response in cattle after vaccination against paratuberculosis in two Dutch dairy herds. Vet Microbiol 86(3):269–278

    Article  CAS  PubMed  Google Scholar 

  45. Fluegel Dougherty AM, Cornish TE, O’Toole D, Boerger-Fields AM, Henderson OL, Mills KW (2013) Abortion and premature birth in cattle following vaccination with Brucella abortus strain RB51. J Vet Diagn Investig 25(5):630–635

    Article  Google Scholar 

  46. Clarke CJ (1997) The pathology and pathogenesis of paratuberculosis in ruminants and other species. J Comp Pathol 116(3):217–261

    Article  CAS  PubMed  Google Scholar 

  47. Kapil S, Trent AM, Goyal SM (1990) Excretion and persistence of bovine coronavirus in neonatal calves. Arch Virol 115(1–2):127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fernandez FM, Conner ME, Hodgins DC, Parwani AV, Nielsen PR, Crawford SE (1998) Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from cows immunized with recombinant SA11 rotavirus core-like particle (CLP) or virus-like particle (VLP) vaccines. Vaccine 16(5):507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Castrucci G, Frigeri F, Salvatori D, Ferrari M, Sardonini Q, Cassai E et al (2002) Vaccination of calves against bovine herpesvirus-1: assessment of the protective value of eight vaccines. Comp Immunol Microbiol Infect Dis 25(1):29–41

    Article  CAS  PubMed  Google Scholar 

  50. Gogev S, Vanderheijden N, Lemaire M, Schynts F, D’Offay J, Deprez I et al (2002) Induction of protective immunity to bovine herpesvirus type 1 in cattle by intranasal administration of replication-defective human adenovirus type 5 expressing glycoprotein gC or gD. Vaccine 20(9–10):1451–1465

    Article  CAS  PubMed  Google Scholar 

  51. Peters AR, Thevasagayam SJ, Wiseman A, Salt JS (2004) Duration of immunity of a quadrivalent vaccine against respiratory diseases caused by BHV-1, PI3V, BVDV, and BRSV in experimentally infected calves. Prev Vet Med 66(1–4):63–77

    Article  CAS  PubMed  Google Scholar 

  52. Chase CCL, Fulton RW, O’Toole D, Gillette B, Daly RF, Perry G et al (2017) Bovine herpesvirus 1 modified live virus vaccines for cattle reproduction: balancing protection with undesired effects. Vet Microbiol 206:69–77

    Article  CAS  PubMed  Google Scholar 

  53. Peters AR (1987) Vaccines for respiratory disease in cattle. Vaccine 5(3):164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chase CC, Hurley DJ, Reber AJ (2008) Neonatal immune development in the calf and its impact on vaccine response. Vet Clin North Am Food Anim Pract 24(1):87–104

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vitour D, Guillotin J, Sailleau C, Viarouge C, Desprat A, Wolff F et al (2011) Colostral antibody induced interference of inactivated bluetongue serotype-8 vaccines in calves. Vet Res 42:18

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hodgins DC, Shewen PE (1996) Preparturient vaccination to enhance passive immunity to the capsular polysaccharide of Pasteurella haemolytica A1. Vet Immunol Immunopathol 50(1–2):67–77

    Article  CAS  PubMed  Google Scholar 

  57. Fike K, Spire MF (2006) Transportation of cattle. Vet Clin North Am Food Anim Pract 22(2):305–320

    Article  PubMed  Google Scholar 

  58. Richeson JT, Beck PA, Gadberry MS, Gunter SA, Hess TW, Hubbell DS 3rd et al (2008) Effects of on-arrival versus delayed modified live virus vaccination on health, performance, and serum infectious bovine rhinotracheitis titers of newly received beef calves. J Anim Sci 86(4):999–1005

    Article  CAS  PubMed  Google Scholar 

  59. Smith RA (2009) North American cattle marketing and bovine respiratory disease (BRD). Anim Health Res Rev 10(2):105–108

    Article  PubMed  Google Scholar 

  60. Hilton WM (2015) Management of preconditioned calves and impacts of preconditioning. Vet Clin North Am Food Anim Pract 31(2):197–207

    Article  PubMed  Google Scholar 

  61. Richeson JT, Hughes HD, Broadway PR, Carroll JA (2019) Vaccination management of beef cattle: delayed vaccination and endotoxin stacking. Vet Clin North Am Food Anim Pract 35(3):575–592

    Article  PubMed  PubMed Central  Google Scholar 

  62. Harland RJ, Potter AA, van Drunen-Littel-van den Hurk S, Van Donkersgoed J, Parker MD, Zamb TJ et al (1992) The effect of subunit or modified live bovine herpesvirus-1 vaccines on the efficacy of a recombinant Pasteurella haemolytica vaccine for the prevention of respiratory disease in feedlot calves. Can Vet J 33(11):734–741

    Google Scholar 

  63. Cortese VS, Seeger JT, Stokka GS, Hunsaker BD, Lardy GP, Weigel DJ et al (2011) Serologic response to Mannheimia haemolytica in calves concurrently inoculated with inactivated or modified-live preparations of M. haemolytica and viral combination vaccines containing modified-live bovine herpesvirus type 1. Am J Vet Res 72(11):1541–1549

    Article  PubMed  Google Scholar 

  64. Lowe JF, Zuckermann FA, Firkins LD, Schnitzlein WM, Goldberg TL (2006) Immunologic responses and reproductive outcomes following exposure to wild-type or attenuated porcine reproductive and respiratory syndrome virus in swine under field conditions. J Am Vet Med Assoc 228(7):1082–1088

    Article  PubMed  Google Scholar 

  65. Palmer MV, Olsen SC, Cheville NF (1997) Safety and immunogenicity of Brucella abortus strain RB51 vaccine in pregnant cattle. Am J Vet Res 58(5):472–477

    CAS  PubMed  Google Scholar 

  66. Pluimers FH (2004) Foot-and-mouth disease control using vaccination: the Dutch experience in 2001. Dev Biol (Basel) 119:41–49

    CAS  Google Scholar 

  67. Stabel JR, Waters WR, Bannantine JP, Lyashchenko K (2011) Mediation of host immune responses adter immunization of neonatal calves with a heat-killed Mycobacterium avium subsp. paratuberculosis vaccine. Clin Vaccine Immunol 18(12):2079–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bannantine JP, Hines ME 2nd, Bermudez LE, Talaat AM, Sreevatsan S, Stabel JR et al (2014) A rational framework for evaluating the next generation of vaccines against Mycobacterium avium subspecies paratuberculosis. Front Cell Infect Microbiol 4:126

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dorneles EMS, Lima GK, Teixeira-Carvalho A, Araújo MSS, Martins-Filho OA, Sriranganathan N et al (2015) Immune response of calves vaccinated with Brucella abortus S19 or RB51 and revaccinated with RB51. PLoS One 10(9):e0136696

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gerdts V, Mutwiri G, Richards J, van Drunen Littel-van den Hurk S, Potter AA (2013) Carrier molecules for use in veterinary vaccines. Vaccine 31(4):596–602

    Article  PubMed  Google Scholar 

  71. Beyer W, Turnbull PC (2009) Anthrax in animals. Mol Asp Med 30(6):481–489

    Article  CAS  Google Scholar 

  72. Sterne M (1989) Anthrax vaccination. Vet Rec 125(5):118

    Article  CAS  PubMed  Google Scholar 

  73. Webster A (1973) Letter: inhibiting effect of antibiotics on anthrax vaccination. Aust Vet J 49(11):545

    Article  CAS  PubMed  Google Scholar 

  74. Jauro S, Ndumnego OC, Ellis C, Buys A, Beyer W, Heerden HV (2020) Immunogenicity and protective efficacy of a non-living anthrax vaccine versus a live spore vaccine with simultaneous penicillin-G treatment in cattle. Vaccines (Basel) 8(4):595

    Article  CAS  Google Scholar 

  75. Cartwright ME, McChesney AE, Jones RL (1987) Vaccination-related anthrax in three llamas. J Am Vet Med Assoc 191(6):715–716

    CAS  PubMed  Google Scholar 

  76. Bloomberg (2019). Retrieved from: https://www.bloomberg.com/press-releases/2019-07-02/veterinary-vaccines-market-worth-8-66-billion-usd-by-2022-at-a-cagr-of-5-9-exclusive-report-by-marketsandmarkets

  77. Marketsandmarkets.com (2020) Retrieved from: https://www.marketsandmarkets.com/Market-Reports/animal-veterinary-vaccines-market-1233.html

  78. Sen A, Saravanan P, Balamurugan V, Rajak KK, Sudhakar SB, Bhanuprakash V, Parida S, Singh RK (2010) Vaccines against peste des petits ruminants virus. Expert Rev Vaccines 9(7):785–796

    Article  CAS  PubMed  Google Scholar 

  79. Ehsan M, Hu RS, Liang QL, Hou JL, Song X, Yan R, Zhu XQ, Li X (2020) Advances in the development of anti-Haemonchus contortus vaccines: challenges, opportunities, and perspectives. Vaccines (Basel) 8(3):555

    Article  CAS  Google Scholar 

  80. Constable PD (2015) Coccidiosis of goats. Merck veterinary manual

    Google Scholar 

  81. Pezzanite L, Neary M, Hutchens T, Scharko P (2009) Common diseases and health problems in sheep and goats, Purdue University extension fact sheet. https://www.extension.purdue.edu/extmedia/as/as-595-commondiseases.pdf

  82. Ruiz A, Muñoz MC, Molina JM, Hermosilla C, Andrada M, Lara P, Bordón E, Pérez D, López AM, Matos L, Guedes AC, Falcón S, Falcón Y, Martín S, Taubert A (2014) Immunization with Eimeria ninakohlyakimovae-live attenuated oocysts protect goat kids from clinical coccidiosis. Vet Parasitol 199(1–2):8–17

    Article  CAS  PubMed  Google Scholar 

  83. Hermans MH, Huijsmans CR, Schellekens JJ, Savelkoul PH, Wever PC (2011) Coxiella burnetii DNA in goat milk after vaccination with Coxevac(®). Vaccine 29(15):2653–2656

    Article  CAS  PubMed  Google Scholar 

  84. Hopla CE, Durden LA, Keirans JE (1994) Ectoparasites and classification. Rev Sci Tech 13(4):985–1017

    Article  CAS  PubMed  Google Scholar 

  85. Jasiorowski HA (1990) Opening statement for the FAO expert consultation on revision of strategies for the control of ticks and tick-borne diseases. Parassitologia 32(1):13–14

    CAS  PubMed  Google Scholar 

  86. Graf JF, Gogolewski R, Leach-Bing N, Sabatini GA, Molento MB, Bordin EL, Arantes GJ (2004) Tick control: an industry point of view. Parasitology 129(Suppl):S427–S442

    Article  PubMed  Google Scholar 

  87. Kunz SE, Kemp DH (1994) Insecticides and acaricides: resistance and environmental impact. Rev Sci Tech 13(4):1249–1286

    Article  CAS  PubMed  Google Scholar 

  88. Dutta S, Godara R, Katoch R, Yadav A, Katoch M, Singh NK (2017) Detection of amitraz and malathion resistance in field populations of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in Jammu region of India. Exp Appl Acarol 71(3):291–301

    Article  CAS  PubMed  Google Scholar 

  89. He H, Chen AC, Davey RB, Ivie GW, George JE (1999) Identification of a point mutation in the para-type sodium channel gene from a pyrethroid-resistant cattle tick. Biochem Biophys Res Commun 261(3):558–561

    Article  CAS  PubMed  Google Scholar 

  90. Heath A, Levot GW (2015) Parasiticide resistance in flies, lice and ticks in New Zealand and Australia: mechanisms, prevalence and prevention. N Z Vet J 63(4):199–210

    Article  CAS  PubMed  Google Scholar 

  91. Redondo M, Fragoso H, Ortiz M, Montero C, Lona J, Medellin JA, Fria R, Hernandez V, Franco R, Machado H, Rodriguez M, de la Fuente J (1999) Integrated control of acaricide-resistant Boophilus microplus populations on grazing cattle in Mexico using vaccination with Gavac and amidine treatments. Exp Appl Acarol 23(10):841–849

    Article  CAS  PubMed  Google Scholar 

  92. Temeyer KB, Pruett JH, Olafson PU, Chen AC (2007) R86Q, a mutation in BmAChE3 yielding a Rhipicephalus microplus organophosphate-insensitive acetylcholinesterase. J Med Entomol 44(6):1013–1018

    Article  CAS  PubMed  Google Scholar 

  93. Hilleman MR (2000) Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. Vaccine 18:1436–1447

    Article  CAS  PubMed  Google Scholar 

  94. Gamble HR, Zarlenga DS (1986) Biotechnology in the development of vaccines for animal parasites. Vet Parasitol 20(1):237–250

    Article  CAS  PubMed  Google Scholar 

  95. Murrell K (1983) Use of the host’s immune response for control of animal parasites. Modern veterinary practice

    Google Scholar 

  96. Barker SC, Murrell A (2008) Systematic and evolution of ticks with the list of valid genus and species names. In: Bowman AS, Nuttall P (eds) Ticks: biology, disease and control. Cambridge University Press, Cambridge

    Google Scholar 

  97. Bishop R, Lambson B, Wells C, Pandit P, Osaso J, Nkonge C, Morzaria S, Musoke A, Nene V (2002) A cement protein of the tick Rhipicephalus appendiculatus, located in the secretory e cell granules of the type III salivary gland acini, induces strong antibody responses in cattle. Int J Parasitol 32(7):833–842

    Article  CAS  PubMed  Google Scholar 

  98. Ferreira CA, Da Silva VI, da Silva SS, Haag KL, Valenzuela JG, Masuda A (2002) Cloning and partial characterization of a Boophilus microplus (Acari: Ixodidae) calreticulin. Exp Parasitol 101(1):25–34

    Article  CAS  PubMed  Google Scholar 

  99. Jaworski DC, Simmen FA, Lamoreaux W, Coons LB, Muller MT, Needham GR (1995) A secreted calreticulin protein in ixodid tick (Amblyomma americanum) saliva. J Insect Physiol 41(4):369–375

    Article  CAS  Google Scholar 

  100. Brossard M, Wikel SK (2004) Tick immunobiology. Parasitology 129(Suppl):S161–S176

    Article  CAS  PubMed  Google Scholar 

  101. Opdebeeck JP (1994) Vaccines against blood-sucking arthropods. Vet Parasitol 54(1–3):205–222

    Article  CAS  PubMed  Google Scholar 

  102. Rand KN, Moore T, Sriskantha A, Spring K, Tellam R, Willadsen P, Cobon GS (1989) Cloning and expression of a protective antigen from the cattle tick Boophilus microplus. Proc Natl Acad Sci U S A 86(24):9657–9661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Willadsen P, Kemp DH (1988) Vaccination with ‘concealed’ antigens for tick control. Parasitol Today 4(7):196–198

    Article  CAS  PubMed  Google Scholar 

  104. Willadsen P, Riding GA, McKenna RV, Kemp DH, Tellam RL, Nielsen JN, Lahnstein J, Cobon GS, Gough JM (1989) Immunologic control of a parasitic arthropod. Identification of a protective antigen from Boophilus microplus. J Immunol 143(4):1346–1351

    CAS  PubMed  Google Scholar 

  105. Nuttall PA, Trimnell AR, Kazimirova M, Labuda M (2006) Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunol 28(4):155–163

    Article  CAS  PubMed  Google Scholar 

  106. Tabor AE, Ali A, Rehman G, Rocha Garcia G, Zangirolamo AF, Malardo T, Jonsson NN (2017) Cattle tick Rhipicephalus microplus-host Interface: a review of resistant and susceptible host responses. Front Cell Infect Microbiol 7:506

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bellgard MI, Moolhuijzen PM, Guerrero FD, Schibeci D, Rodriguez-Valle M, Peterson DG, Dowd SE, Barrero R, Hunter A, Miller RJ (2012) CattleTickBase: an integrated internet-based bioinformatics resource for Rhipicephalus (Boophilus) microplus. Int J Parasitol 42(2):161–169

    Article  CAS  PubMed  Google Scholar 

  108. Godel C, Kumar S, Koutsovoulos G, Ludin P, Nilsson D, Comandatore F, Wrobel N, Thompson M, Schmid CD, Goto S (2012) The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets. FASEB J 26(11):4650–4661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Antunes S, Merino O, Mosqueda J, Moreno-Cid JA, Bell-Sakyi L, Fragkoudis R, Weisheit S, Perez de la Lastra JM, Alberdi P, Domingos A, de la Fuente J (2014) Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection. Parasit Vectors 7:42

    Article  PubMed  PubMed Central  Google Scholar 

  110. de Moura ST, da Fonseca AH, Fernandes CG, Butler JF (1997) Artificial feeding of Amblyomma cajennense (Fabricius, 1787) (Acari:Ixodidae) through silicone membrane. Mem Inst Oswaldo Cruz 92(4):545–548

    Article  PubMed  Google Scholar 

  111. De Wilde M (1987) Vaccine development within industry. Acta Trop Suppl 12:104–107

    PubMed  Google Scholar 

  112. Canales M, Enriquez A, Ramos E, Cabrera D, Dandie H, Soto A, Falcon V, Rodriguez M, de la Fuente J (1997) Large-scale production in Pichia pastoris of the recombinant vaccine Gavac against cattle tick. Vaccine 15(4):414–422

    Article  CAS  PubMed  Google Scholar 

  113. Rodriguez M, Rubiera R, Penichet M, Montesinos R, Cremata J, Falcon V, Sanchez G, Bringas R, Cordoves C, Valdes M et al (1994) High level expression of the B. microplus Bm86 antigen in the yeast Pichia pastoris forming highly immunogenic particles for cattle. J Biotechnol 33(2):135–146

    Article  CAS  PubMed  Google Scholar 

  114. Rodríguez-Valle M, Mendez L, Valdez M, Redondo M, Espinosa CM, Vargas M, Cruz RL, Barrios HP, Seoane G, Ramirez ES, Boue O, Vigil JL, Machado H, Nordelo CB, Pineiro MJ (2004) Integrated control of Boophilus microplus ticks in Cuba based on vaccination with the anti-tick vaccine Gavac. Exp Appl Acarol 34(3–4):375–382

    Article  Google Scholar 

  115. Suarez M, Rubi J, Pérez D, Cordova V, Salazar Y, Vielma A, Barrios F, Gil CA, Segura N, Carrillo Y, Cartaya R, Palacios M, Rubio E, Escalona C, Chacon Ramirez R, Basulto Baker R, Machado H, Sordo Y, Bermudes J, Vargas M, Montero C, Cruz A, Puente P, Rodriguez JL, Mantilla E, Oliva O, Smith E, Castillo A, Ramos B, Ramirez Y, Abad Z, Morales A, Gonzalez EM, Hernandez A, Ceballo Y, Callard D, Cardoso A, Navarro M, Gonzalez JL, Pina R, Cueto M, Borroto C, Pimentel E, Carpio Y, Estrada MP (2016) High impact and effectiveness of Gavac™ vaccine in the national program for control of bovine ticks Rhipicephalus microplus in Venezuela. Livest Sci 187:48–52

    Article  Google Scholar 

  116. Rodríguez R, Méndez L, Fuentes A, Hernández Y (2019) Situation of the bovine hemoparasitosis transmitted by Rhipicephalus microplus in Cuba. In: Rodríguez-Mallon A (ed) BioTicks 2019 congress. Elfos Scientiae, Varadero

    Google Scholar 

  117. Rodríguez-Mallon A, Bechara GH, Zacarias RM, Benavides-Ortiz E, Soto-Rivas JL, Gómez-Ramírez AP, Jaimes-Olaya JA, Estrada-García MP (2013) Inhibition of Ehrlichia canis and Babesia canis transmission among ticks fed together on dogs vaccinated with Bm86 antigen. Open J Animal Sci 3(3A):24–32

    Article  Google Scholar 

  118. FAO (2020) The state of world fisheries and aquaculture 2020. Sustainability in action. Rome

    Google Scholar 

  119. Okocha RC, Olatoye IO, Adedeji OB (2018) Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Rev 39:21

    Article  PubMed  PubMed Central  Google Scholar 

  120. Adams A (2019) Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol 90:210–214

    Article  CAS  PubMed  Google Scholar 

  121. Kayansamruaj P, Areechon N, Unajak S (2020) Development of fish vaccine in Southeast Asia: a challenge for the sustainability of SE Asia aquaculture. Fish Shellfish Immunol 103:73–87

    Article  CAS  PubMed  Google Scholar 

  122. Ma J, Bruce TJ, Jones EM, Cain KD (2019) A review of fish vaccine development strategies: conventional methods and modern biotechnological approaches. Microorganisms 7(11):569

    Article  CAS  PubMed Central  Google Scholar 

  123. Somamoto T, Nakanishi T (2020) Mucosal delivery of fish vaccines: local and systemic immunity following mucosal immunisations. Fish Shellfish Immunol 99:199–207

    Article  CAS  PubMed  Google Scholar 

  124. Jansen MD, Dong HT, Mohan CV (2019) Tilapia lake virus: a threat to the global tilapia industry? Rev Aquac 11:725–739

    Article  Google Scholar 

  125. Zeng W, Wang Y, Hu H, Wang Q, Bergmann SM, Wang Y, Li B, Lv Y, Li H, Yin J, Li Y (2021) Cell culture-derived tilapia lake virus-inactivated vaccine containing Montanide adjuvant provides high protection against viral challenge for tilapia. Vaccine 9:86

    Article  CAS  Google Scholar 

  126. Kannika K, Pisuttharachai D, Srisapoome P, Wongtavatchai J, Kondo H, Hirono I, Unajak S, Areechon N (2017) Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR. J Appl Microbiol 122:1497–1507

    Article  CAS  PubMed  Google Scholar 

  127. Pumchan A, Krobthong S, Roytrakul S, Sawatdichaikul O, Kondo H, Hirono I, Areechon N, Unajak S (2020) Novel chimeric multiepitope vaccine for streptococcosis disease in Nile tilapia (Oreochromis niloticus Linn.). Sci Reports 10:603

    Google Scholar 

  128. Kitiyodom S, Yata T, Yostawornkul J, Kaewmalun S, Nittayasut N, Suktham K, Surassmo S, Namdee K, Rodkhum C, Pirarat N (2019) Enhanced efficacy of immersion vaccination in tilapia against columnaris disease by chitosan-coated “pathogen-like” mucoadhesive nanovaccines. Fish Shellfish Immunol 95:213–219

    Article  CAS  PubMed  Google Scholar 

  129. Embregts CWE, Forlenza M (2016) Oral vaccination of fish: lessons from humans and veterinary species. Dev Comp Immunol 64:118–137

    Article  CAS  PubMed  Google Scholar 

  130. Sotomayor-Gerding D, Troncoso JM, Pino A, Almendras F, Diaz MR (2020) Assessing the immune response of Atlantic salmon (Salmo salar) after the oral intake of alginate-encapsulated Piscirickettsia salmonis antigens. Vaccine 8:450

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thomas, S., Abraham, A., Rodríguez-Mallon, A., Unajak, S., Bannantine, J.P. (2022). Challenges in Veterinary Vaccine Development. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2411. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1888-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1888-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1887-5

  • Online ISBN: 978-1-0716-1888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics