Skip to main content

Generation of CpG-Recoded Zika Virus Vaccine Candidates

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2410))

Abstract

Experimental increase of cytosine-phosphate-guanine (CpG) dinucleotides in an RNA virus genome impairs infection. Beneficially, this weak infection may lead to robust antiviral host immunity providing a cutting-edge approach for vaccines. For example, we have recently demonstrated that recoded Zika virus variants with the increased CpG content showed considerable attenuated infection phenotypes and protection against lethal challenge in mice. Here, we describe the workflow for the design and generation of CpG-recoded Zika virus vaccine candidates. The workflow can be adapted for other viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Josse J, Kaiser AD, Kornberg A (1961) Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. J Biol Chem 236:864–875

    Article  CAS  Google Scholar 

  2. Cheng X, Virk N, Chen W et al (2013) CpG usage in RNA viruses: data and hypotheses. PLoS One 8:e74109

    Article  CAS  Google Scholar 

  3. Rima BK, McFerran NV (1997) Dinucleotide and stop codon frequencies in single-stranded RNA viruses. J Gen Virol 78:2859–2870

    Article  CAS  Google Scholar 

  4. Gaunt E, Wise HM, Zhang H et al (2016) Elevation of CpG frequencies in influenza a genome attenuates pathogenicity but enhances host response to infection. elife 5:e12735

    Article  Google Scholar 

  5. Atkinson NJ, Witteveldt J, Evans DJ et al (2014) The influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication. Nucleic Acids Res 42:4527–4545

    Article  CAS  Google Scholar 

  6. Burns CC, Campagnoli R, Shaw J et al (2009) Genetic inactivation of poliovirus infectivity by increasing the frequencies of CpG and UpA dinucleotides within and across synonymous capsid region codons. J Virol 83:9957–9969

    Article  CAS  Google Scholar 

  7. Kunec D, Osterrieder N (2016) Codon pair bias is a direct consequence of dinucleotide bias. Cell Rep 14:55–67

    Article  CAS  Google Scholar 

  8. Antzin-Anduetza I, Mahiet C, Granger LA et al (2017) Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication. Retrovirology 14:49

    Article  Google Scholar 

  9. Takata MA, Gonçalves-Carneiro D, Zang TM et al (2017) CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 550:124–127

    Article  CAS  Google Scholar 

  10. Trus I, Udenze D, Berube N et al (2019) CpG-recoding in Zika virus genome causes host-age-dependent attenuation of infection with protection against lethal heterologous challenge in mice. Front Immunol 10:3077

    Article  CAS  Google Scholar 

  11. Odon V, Fros JJ, Goonawardane N et al (2019) The role of ZAP and OAS3/RNAseL pathways in the attenuation of an RNA virus with elevated frequencies of CpG and UpA dinucleotides. Nucleic Acids Res 47:8061–8083

    Article  CAS  Google Scholar 

  12. Georges A, Gopaul D, Denby Wilkes C et al (2019) Functional interplay between Mediator and RNA polymerase II in Rad2/XPG loading to the chromatin. Nucleic Acids Res 47:8988–9004

    Article  CAS  Google Scholar 

  13. Ficarelli M, Wilson H, Pedro Galão R et al (2019) KHNYN is essential for the zinc finger antiviral protein (ZAP) to restrict HIV-1 containing clustered CpG dinucleotides. elife 8:e46767

    Article  Google Scholar 

  14. Le Nouën C, Collins PL, Buchholz UJ (2019) Attenuation of human respiratory viruses by synonymous genome recoding. Front Immunol 10:1250

    Article  Google Scholar 

  15. Guillot S, Otelea D, Delpeyroux F et al (1994) Point mutations involved in the attenuation/neurovirulence alternation in type 1 and 2 oral polio vaccine strains detected by site-specific polymerase chain reaction. Vaccines 12:503–507

    Article  CAS  Google Scholar 

  16. Simmonds P (2012) SSE: a nucleotide and amino acid sequence analysis platform. BMC Res Notes 5:50

    Article  CAS  Google Scholar 

  17. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  18. Xu MY, Liu SQ, Deng CL et al (2016) Detection of Zika virus by SYBR green one-step real-time RT-PCR. J Virol Methods 236:93–97

    Article  CAS  Google Scholar 

  19. Kärber G (1931) Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 162:480–483

    Article  Google Scholar 

  20. Baronti C, Piorkowski G, Charrel RN et al (2014) Complete coding sequence of Zika virus from a French Polynesia outbreak in 2013. Genome Announc 2:e00500

    Article  Google Scholar 

  21. Tulloch F, Atkinson NJ, Evans DJ et al (2014) RNA virus attenuation by codon pair deoptimisation is an artefact of increases in CpG/UpA dinucleotide frequencies. elife 3:e04531

    Article  Google Scholar 

  22. Atieh T, Baronti C, De Lamballerie X et al (2016) Simple reverse genetics systems for Asian and African Zika viruses. Sci Rep 6:39384

    Article  CAS  Google Scholar 

  23. Gadea G, Bos S, Krejbich-Trotot P et al (2016) A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene. Virology 497:157–162

    Article  CAS  Google Scholar 

  24. Atieh T, Nougairède A, Klitting R et al (2017) New reverse genetics and transfection methods to rescue arboviruses in mosquito cells. Sci Rep 7:13983

    Article  Google Scholar 

  25. Grubaugh ND, Gangavarapu K, Quick J et al (2019) An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol 20:8

    Article  Google Scholar 

Download references

Acknowledgment

Published as VIDO-InterVac manuscript series no. 912.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uladzimir Karniychuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trus, I., Udenze, D., Karniychuk, U. (2022). Generation of CpG-Recoded Zika Virus Vaccine Candidates. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2410. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1884-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1884-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1883-7

  • Online ISBN: 978-1-0716-1884-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics