Skip to main content

Recent Advances in Plant Gene Silencing Methods

  • Protocol
  • First Online:
Plant Gene Silencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2408))

Abstract

With the increasing understanding of fundamentals of gene silencing pathways in plants, various tools and techniques for downregulating the expression of a target gene have been developed across multiple plant species. This chapter provides an insight into the molecular mechanisms of gene silencing and highlights the advancements in various gene silencing approaches. The prominent aspects of different gene silencing methods, their advantages and disadvantages have been discussed. A succinct discussion on the newly emerged microRNA-based technologies like microRNA-induced gene silencing (MIGS) and microRNA-mediated virus-induced gene silencing (MIR-VIGS) are also presented. We have also discussed the gene-editing system like CRISPR-Cas. The prominent bottlenecks in gene silencing methods are the off-target effects and lack of universal applicability. However, the tremendous growth in understanding of this field reflects the potentials for improvements in the currently available approaches and the development of new widely applicable methods for easy, fast, and efficient functional characterization of plant genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    CAS  PubMed  Google Scholar 

  2. Vaucheret H, Fagard M (2001) Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet 17:29–35

    CAS  PubMed  Google Scholar 

  3. Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    CAS  PubMed  Google Scholar 

  4. Selker EU (2002) Repeat-induced gene silencing in fungi. Adv Genet 46:439–450

    CAS  PubMed  Google Scholar 

  5. Barry C, Faugeron G, Rossignol J-L (1993) Methylation induced premeiotically in Ascobolus: coextension with DNA repeat lengths and effect on transcript elongation. Proc Natl Acad Sci USA 90:4557–4561

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Selker EU (1997) Epigenetic phenomena in filamentous fungi: useful paradigms or repeat induced confusion? Trends Genet 13:296–301

    CAS  PubMed  Google Scholar 

  7. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55

    CAS  PubMed  Google Scholar 

  9. Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411(6839):834–842

    CAS  PubMed  Google Scholar 

  10. Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol JN, Kooter JM (2001) Transcriptional and post-transcriptional gene silencing are mechanistically related. Curr Biol 11(6):436–440

    CAS  PubMed  Google Scholar 

  11. Chan SWL, Zilberman D, Xie Z, Johansen LK, Carrington JC, Jacobsen SE (2004) RNA silencing genes control de novo DNA methylation. Science 303:1336

    CAS  PubMed  Google Scholar 

  12. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104

    PubMed  PubMed Central  Google Scholar 

  13. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    CAS  PubMed  Google Scholar 

  14. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Baulcombe DC (1996) RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol Biol 32:79–88

    CAS  PubMed  Google Scholar 

  16. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Borsani O, Zhu JH, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A, Zhu JK, Staskawicz BJ, Jin HL (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 103:18002–18007

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu H, Li B, Iwakawa H et al (2020) Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature 581:89–93

    CAS  PubMed  Google Scholar 

  20. Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5:e57

    PubMed  PubMed Central  Google Scholar 

  21. Liu YX, Wang M, Wang XJ (2014) Endogenous small RNA clusters in plants. Genomics Proteomics Bioinformatics 12(2):64–71

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Quintero A, Pérez-Quintero AL, López C (2013) Identification of ta-siRNAs and Cis-nat-siRNAs in cassava and their roles in response to cassava bacterial blight. Genomics Proteomics Bioinformatics 11(3):172–181

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zubko E, Meyer P (2007) A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation. Plant J 52:1131–1139

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ron M, Saez MA, Williams LE, Fletcher JC, McCormick S (2010) Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev 24:1010–1021

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jin H, Vacic V, Girke T, Lonardi S, Zhu JK (2008) Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol Biol 9:6

    PubMed  PubMed Central  Google Scholar 

  26. Montavon T, Kwon Y, Zimmermann A, Hammann P, Vincent T, Cognat V, Michel F, Dunoyer P (2017) A specific dsRNA-binding protein complex selectively sequesters endogenous inverted-repeat siRNA precursors and inhibits their processing. Nucleic Acids Res 45(3):1330–1344

    CAS  PubMed  Google Scholar 

  27. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    CAS  PubMed  Google Scholar 

  28. Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16(12):727–741

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yelina NE, Smith LM, Jones AM, Patel K, Kelly KA, Baulcombe DC (2010) Putative Arabidopsis THO/TREX mRNA export complex is involved in transgene and endogenous siRNA biosynthesis. Proc Natl Acad Sci U S A 107:13948–13953

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Montgomery TA, Yoo SJ, Fahlgren N, Gilbert SD, Howell MD, Sullivan CM, Alexander A, Nguyen G, Allen E, Ahn JH, Carrington JC (2008) AGO1-miR173 complex initiates phased siRNA formation in plants. Proc Natl Acad Sci U S A 105:20055–20062

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

    CAS  PubMed  Google Scholar 

  33. Elmayan T, Adenot X, Gissot L, Lauressergues D, Gy I, Vaucheret H (2009) A neomorphic sgs3 allele stabilizing miRNA cleavage products reveals that SGS3 acts as a homodimer. FEBS J 276:835–844

    CAS  PubMed  Google Scholar 

  34. Hernandez-Pinzon N, Schwach F, Studholme DJ, Baulcombe D, Dalmay T (2007) SDE5 the putative homologue of a human mRNA export factor, is required for transgene silencing and accumulation of trans-acting endogenous siRNA. Plant J 50:140–148

    CAS  PubMed  Google Scholar 

  35. Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494–1500

    CAS  PubMed  Google Scholar 

  36. Nakazawa Y, Hiraguri A, Moriyama H, Fukuhara T (2007) The dsRNA-binding protein DRB4 interacts with the Dicer-like protein DCL4 in vivo and functions in the trans-acting siRNA pathway. Plant Mol Biol 63:777–785

    CAS  PubMed  Google Scholar 

  37. de Alba AEM, Elvira-Matelot E, Vaucheret H (2013) Gene silencing in plants: a diversity of pathways. Biochim Biophys Acta 1829:1300–1308

    Google Scholar 

  38. de Felippes FF, Wang JW, Weigel D (2012) MIGS: miRNA induced gene silencing. Plant J 70:541–547

    PubMed  Google Scholar 

  39. Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, White CI, Danielsen JMR, Yang Y-G, Qi Y (2012) A role for Small RNAs in DNA double-strand break repair. Cell 149(1):101–112

    CAS  PubMed  Google Scholar 

  40. Robertson D (2004) VIGS vectors for gene silencing, many targets, many tools. Ann Rev Plant Biol 55:495–519

    CAS  Google Scholar 

  41. Senthil-Kumar M, Mysore KS (2010) RNAi in plants: recent developments and applications in agriculture. In: Catalano AJ (ed) Gene silencing: theory, techniques and applications. Nova Science Publishers

    Google Scholar 

  42. Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16:656–665

    CAS  PubMed  Google Scholar 

  43. Senthil-Kumar M, Mysore KS (2014) Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc 9(7):1549–1562

    CAS  PubMed  Google Scholar 

  44. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS (2005) Posttranscriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 5(3):331–341

    Google Scholar 

  45. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  46. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402

    Google Scholar 

  47. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial MicroRNAs in Arabidopsis. Plant Cell 18:1121–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10:512–519

    CAS  PubMed  Google Scholar 

  49. Pikaard CS, Haag JR, Ream T, Wierzbicki AT (2008) Roles of RNA polymerase IV in gene silencing. Trends Plant Sci 13:390–397

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 1:204–220

    Google Scholar 

  51. Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang Z, Ebright YW, Yu B, Chen X (2006) HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3′ terminal nucleotide. Nucleic Acids Res 34:667–675

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang H, Zhu J-K (2011) RNA directed DNA methylation. Curr Opin Plant Biol 14(2):142–147

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao X, Jacobsen SE (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    CAS  PubMed  Google Scholar 

  55. Wassenegger M (2000) RNA-directed DNA methylation. Plant Mol Biol 43:203–220

    CAS  PubMed  Google Scholar 

  56. Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    CAS  PubMed  Google Scholar 

  57. Himmelbach A, Zierold U, Hensel G, Riechen J, Douchkov D, Schweizer P, Kumlehn J (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol 145:1192–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu G, Sui N, Tang Y, Xie K, Lai Y, Liu Y (2010) One-step, zero-background ligation-independent cloning intron-containing hairpin RNA constructs for RNAi in plants. New Phytol 187:240–250

    CAS  PubMed  Google Scholar 

  59. Yan P, Shen W, Gao X, Li X, Zhou P, Duan J (2012) High-throughput construction of intron-containing hairpin RNA vectors for RNAi in plants. PLoS One 7(5):e38186

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu S, Yoder J (2016) Chemical induction of hairpin RNAi molecules to silence vital genes in plant roots. Sci Rep 6:37711

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    CAS  PubMed  Google Scholar 

  62. Senthil-Kumar M, Hema R, Anand A, Kang L, Udayakumar M, Mysore KS (2007) A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol 176:791–882

    Google Scholar 

  63. Senthil-Kumar M, Lee HK, Mysore KS (2013) VIGS-mediated forward genetics screening for identification of genes involved in nonhost resistance. J Vis Exp 78:e51033. https://doi.org/10.3791/51033

    Article  CAS  Google Scholar 

  64. Carrillo-Tripp J, Shimada-Beltrán H, Rivera-Bustamante R (2006) Use of geminiviral vectors for functional genomics. Curr Opin Plant Biol 9(2):209–215

    CAS  PubMed  Google Scholar 

  65. Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ramegowda V, Mysore KS, Senthil-Kumar M (2014) Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. Front Plant Sci 5:323

    PubMed  PubMed Central  Google Scholar 

  67. de Felippes FF (2013) Downregulation of plant genes with miRNA-induced gene silencing. Methods Mol Biol 942:379–387

    PubMed  Google Scholar 

  68. Wulfert S, Krueger S (2018) Phosphoserine Aminotransferase1 is part of the phosphorylated pathways for serine biosynthesis and essential for light and sugar-dependent growth promotion. Front Plant Sci 9:1712

    PubMed  PubMed Central  Google Scholar 

  69. Zhou C-M, Zhang T-Q, Wang X, Yu S, Lian H, Tang H, Feng Z-Y, Zozomova-Lihova J, Wang J-W (2013) Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 340(6136):1097–1100

    CAS  PubMed  Google Scholar 

  70. Sicard A, Kappel C, Josephs EB, Lee YW, Marona C, Stinchcombe JR, Wright SI, Lenhard M (2015) Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella. Nat Commun 6:7960

    CAS  PubMed  Google Scholar 

  71. Han Y, Zhang B, Qin X, Li M, Guo Y (2015) Investigation of a miRNA-induced gene silencing technique in petunia reveals alterations in miR173 precursor processing and the accumulation of secondary siRNAs from endogenous genes. PLoS One 10(12):e0144909

    PubMed  PubMed Central  Google Scholar 

  72. Zheng X, Yang L, Li Q, Ji L, Tang A, Zang L, Deng K, Zhou J, Zhang Y (2018) MIGS as a simple and efficient method for gene silencing in rice. Front Plant Sci 9:662

    PubMed  PubMed Central  Google Scholar 

  73. Dai X, Zhao PX (2008) pssRNAMiner: a plant short small RNA regulatory cascade analysis server. Nucleic Acids Res 1:36

    Google Scholar 

  74. Zhang C, Li G, Zhu S, Zhang S, Fang J (2014) tasiRNAdb: a database of ta-siRNA regulatory pathways. Bioinformatics 30(7):1045–1046

    PubMed  Google Scholar 

  75. Li F, Orban R, Baker B (2012) SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant J 70(5):891–901

    CAS  PubMed  Google Scholar 

  76. Liang G, He H, Li Y, Yu D (2012) A new strategy for construction of artificial miRNA vectors in Arabidopsis. Planta 235(6):1421–1429

    CAS  PubMed  Google Scholar 

  77. Carbonell A, Takeda A, Fahlgren N, Johnson SC, Cuperus JT, Carrington JC (2014) New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol 165(1):15–29

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53(4):674–690

    CAS  PubMed  Google Scholar 

  79. Laganà A, Acunzo M, Romano G, Pulvirenti A, Veneziano D, Cascione L, Giugno R, Gasparini P, Shasha D, Ferro AC, Croce M (2014) miR-Synth: a computational resource for the design of multi-site multi-target synthetic miRNAs. Nucleic Acids Res 42(9):5416–5425. https://doi.org/10.1093/nar/gku202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    CAS  PubMed  Google Scholar 

  82. Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Molesini B, Pii Y, Pandolfini T (2011) Fruit improvement using intra-genesis and artificial microRNA. Trends Biotech 30:80–88

    Google Scholar 

  84. Tang Y, Wang F, Zhao J, Xie K, Hong Y, Liu Y (2010) Virus-based microRNA expression for gene functional analysis in plants. Plant Physiol 153(2):632–641

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tang Y, Lai Y, Liu Y (2013) Virus-induced gene silencing using artificial miRNAs in Nicotiana benthamiana. Methods Mol Biol 975:99–107

    CAS  PubMed  Google Scholar 

  86. Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nunes CC, Gowda M, Sailsbery J, Xue M, Chen F, Brown D, Oh Y, Mitchell TM, Dean RA (2011) Diverse and tissue-enriched small RNAs in the plant pathogenic fungus Magnaporthe oryzae. BMC Genomics 12:1–20

    Google Scholar 

  88. Tinoco ML, Dias BB, Dall’Astta RC, Pamphile JA, Aragao FJ (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:1–11

    Google Scholar 

  89. Ghag SB, Shekhawat UK, Ganapathi TR (2014) Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol J 12(5):541–553

    CAS  PubMed  Google Scholar 

  90. Qi T, Guo J, Peng H, Liu P, Kang Z, Guo J (2019) Host-induced gene silencing: a powerful strategy to control diseases of wheat and barley. Int J Mol Sci 20(1):206

    PubMed Central  Google Scholar 

  91. Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 103(14):302–306

    Google Scholar 

  92. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    CAS  PubMed  Google Scholar 

  93. Tomilov AA, Tomilova NB, Wroblewski T, Michelmore R, Yoder JI (2008) Trans-specific gene silencing between host and parasitic plants. Plant J 56:389–397

    CAS  PubMed  Google Scholar 

  94. Westwood JH, Roney JK, Khatibi PA, Stromberg VK (2009) RNA translocation between parasitic plants and their hosts. Pest Manag Sci 65:533–539

    CAS  PubMed  Google Scholar 

  95. Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant-Microbe Interact 15:747–752

    CAS  PubMed  Google Scholar 

  96. Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360(6393):1126–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    CAS  PubMed  Google Scholar 

  98. Yin C, Jurgenson J, Hulbert S (2010) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant-Microbe Interact 24:554–561

    Google Scholar 

  99. Voinnet O, Vain P, Angell S, Baulcombe DC (1998) Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177–187

    CAS  PubMed  Google Scholar 

  100. Rutherford G, Tanurdzic M, Hasebe M, Banks JA (2004) A systemic gene silencing method suitable for high throughput, reverse genetic analyses of gene function in fern gametophytes. BMC Plant Biol 4:6

    PubMed  PubMed Central  Google Scholar 

  101. Tsuboi H, Sutoh K, Wada M (2012) Epigenetic memory of DNAi associated with cytosine methylation and histone modification in fern. Plant Signal Behav 7(11):1477–1483

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Klahre U, Crete P, Leuenberger SA, Iglesias VA, Meins F Jr (2002) High molecular weight RNAs and small interfering RNAs induce systemic post-transcriptional gene silencing in plants. Proc Natl Acad Sci U S A 99:11981–11986

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Numata K, Ohtani M, Yoshizumi T, Demura T, Kodama Y (2014) Local gene silencing in plants via synthetic dsRNAand carrier peptide. Plant Biotechnol J 12:1027–1034. https://doi.org/10.1111/pbi.12208

    Article  CAS  PubMed  Google Scholar 

  104. Silva AT, Nguyen A, Ye C, Verchot J, Moon JH (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol 10:291

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP (2020) Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci Adv 6(26):eaaz0495

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Otagaki S, Arai M, Takahashi A, Goto K, Hong JS, Masuta C, Kazazawa A (2006) Rapid induction of transcriptional and post-transcriptional gene silencing using a novel Cucumber mosaic virus vector. Plant Biotechnol 23:259–265

    CAS  Google Scholar 

  107. Kon T, Yoshikawa N (2014) Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing. Front Microbiol 5:595

    PubMed  PubMed Central  Google Scholar 

  108. Ju Z, Wang L, Cao D, Zuo J, Zhu H, Fu D, Luo Y, Zhu B (2016) A viral satellite DNA vector-induced transcriptional gene silencing via DNA methylation of gene promoter in Nicotiana benthamiana. Virus Res 223:99–107. 

    Google Scholar 

  109. Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194–5201

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Heilersig BH, Loonen AE, Janssen EM, Wolters AM, Visser RG (2006) Efficiency of transcriptional gene silencing of GBSSI in potato depends on the promoter region that is used in an inverted repeat. Mol Gen Genomics 275:437–449

    CAS  Google Scholar 

  111. Cigan AM, Unger-Wallace E, Haug-Collet K (2005) Transcriptional gene silencing as a tool for uncovering gene function in maize. Plant J 43:929–940

    CAS  PubMed  Google Scholar 

  112. Deng S, Dai H, Arenas C, Wang H, Niu QW, Chua NH (2014) Transcriptional silencing of Arabidopsis endogenes by single-stranded RNAs targeting the promoter region. Plant Cell Physiol 55(4):823–833

    CAS  PubMed  Google Scholar 

  113. Wakasa Y, Kawakatsu T, Harada T, Takaiwa F (2018) Transgene-independent heredity of RdDM-mediated transcriptional gene silencing of endogenous genes in rice. Plant Biotechnol J 16:2007–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Qiu S, Adema CM, Lane T (2005) A computational study of off-target effects of RNA interference. Nucleic Acids Res 33:1834–1847

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Jackson AL, Linsley PS (2004) Noise amidst the silence: off-target effects of siRNAs? Trends Genet 20:521–524

    CAS  PubMed  Google Scholar 

  116. Senthil-Kumar M, Mysore KS (2011) Caveat of RNAi in plants: the off-target effect. Methods Mol Biol 744:13–25

    CAS  PubMed  Google Scholar 

  117. Xu P, Zhang Y, Kang L, Roossinck MJ, Mysore KS (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142:429–440

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Das PR, Sherif SM (2020) Application of exogenous dsRNAs-induced RNAi in agriculture: challenges and triumphs. Front Plant Sci 11:946

    PubMed  PubMed Central  Google Scholar 

  119. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the IAP gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    PubMed  PubMed Central  Google Scholar 

  121. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas C, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18(2):67–83

    CAS  PubMed  Google Scholar 

  122. Manghwar H, Lindsey K, Zhang X, Jin S (2019) CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci 24(12):1102–1125

    CAS  PubMed  Google Scholar 

  123. Xie K, Minkenberg B, Yang Y (2014) Targeted gene mutation in rice using a CRISPR-Cas9 system. Bio-protocol 4(17):e1225

    Google Scholar 

  124. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588

    CAS  PubMed  Google Scholar 

  127. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F (2013) RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat Methods 10(10):973–976

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM (2015) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13:578–589

    CAS  PubMed  Google Scholar 

  129. Wang Y, Beaith M, Chalifoux M, Ying J, Uchacz T, Sarvas C, Griffiths R, Kuzma M, Wan J, Huang Y (2009) Shoot-specific down-regulation of protein farnesyltransferase (a-subunit) for yield protection against drought in canola. Mol Plant 2:191–200

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Senthil-Kumar M, Udayakumar M (2010) Post transcriptional gene silencing methods for functional characterization of abiotic stress responsive genes in plants. In: Catalano AJ (ed) Gene silencing: theory, techniques and applications. Nova Science Publishers, New York, NY

    Google Scholar 

  131. Ahmed F, Senthil-Kumar M, Dai X, Ramu VS, Lee S, Mysore KS, Zhao PX (2020) pssRNAit—a web server for designing effective and specific plant siRNAs with genome-wide off-target assessment. Plant Physiol 184(1):65–81

    Google Scholar 

  132. Kanazawa A, Inaba J, Shimura H, Otagaki S, Tsukahara S, Matsuzawa A, Kim BM, Goto K, Masuta C (2011) Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. Plant J 65:156–168

    CAS  PubMed  Google Scholar 

  133. Zhang ZJ (2014) Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements. Planta 239:1139–1146

    Google Scholar 

  134. Pandey P, Senthil-Kumar M, Mysore KS (2015) Advances in plant gene silencing methods. Methods Mol Biol 1287:3–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthappa Senthil-Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pandey, P., Mysore, K.S., Senthil-Kumar, M. (2022). Recent Advances in Plant Gene Silencing Methods. In: Mysore, K.S., Senthil-Kumar, M. (eds) Plant Gene Silencing. Methods in Molecular Biology, vol 2408. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1875-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1875-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1874-5

  • Online ISBN: 978-1-0716-1875-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics