Skip to main content

The Cultured TCM Model of HIV Latency

  • Protocol
  • First Online:
HIV Reservoirs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2407))

  • 1416 Accesses

Abstract

Models to study HIV latency have improved our understanding of the mechanisms involved in this process and have helped in the discovery and development of therapeutic strategies to eradicate HIV. Primary cell models are based on the in vitro generation of latently infected cells using CD4T cells isolated from blood, lymph nodes or other lymphoid organs. In this chapter, we describe the generation of HIV latently infected memory CD4T cells using blood naïve CD4T cells from peripheral blood with a phenotype resembling that of central memory CD4T cells. This model can be used to investigate the mechanisms involved in latency as well to develop strategies to target it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosque A, Planelles V (2009) Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood 113(1):58–65. https://doi.org/10.1182/blood-2008-07-168393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Saleh S, Solomon A, Wightman F, Xhilaga M, Cameron PU, Lewin SR (2007) CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood 110(13):4161–4164. https://doi.org/10.1182/blood-2007-06-097907

    Article  CAS  PubMed  Google Scholar 

  3. Yang HC, Xing S, Shan L, O’Connell K, Dinoso J, Shen A, Zhou Y, Shrum CK, Han Y, Liu JO, Zhang H, Margolick JB, Siliciano RF (2009) Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest 119(11):3473–3486. https://doi.org/10.1172/JCI39199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marini A, Harper JM, Romerio F (2008) An in vitro system to model the establishment and reactivation of HIV-1 latency. J Immunol 181(11):7713–7720

    Article  CAS  PubMed  Google Scholar 

  5. Tyagi M, Pearson RJ, Karn J (2010) Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J Virol 84(13):6425–6437. https://doi.org/10.1128/JVI.01519-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lassen KG, Hebbeler AM, Bhattacharyya D, Lobritz MA, Greene WC (2012) A flexible model of HIV-1 latency permitting evaluation of many primary CD4 T-cell reservoirs. PLoS One 7(1):e30176. https://doi.org/10.1371/journal.pone.0030176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martins LJ, Bonczkowski P, Spivak AM, De Spiegelaere W, Novis CL, DePaula-Silva AB, Malatinkova E, Trypsteen W, Bosque A, Vanderkerckhove L, Planelles V (2016) Modeling HIV-1 latency in primary T cells using a replication-competent virus. AIDS Res Hum Retrovir 32(2):187–193. https://doi.org/10.1089/aid.2015.0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Macedo AB, Resop RS, Martins LJ, Szaniawski MA, Sorensen ES, Spivak AM, Nixon DF, Jones RB, Planelles V, Bosque A (2018) Influence of biological sex, age and HIV status in an in vitro primary cell model of HIV latency using a CXCR4 tropic virus. AIDS Res Hum Retrovir 34(9):769–777. https://doi.org/10.1089/AID.2018.0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bonczkowski P, De Spiegelaere W, Bosque A, White CH, Van Nuffel A, Malatinkova E, Kiselinova M, Trypsteen W, Witkowski W, Vermeire J, Verhasselt B, Martins L, Woelk CH, Planelles V, Vandekerckhove L (2014) Replication competent virus as an important source of bias in HIV latency models utilizing single round viral constructs. Retrovirology 11:70. https://doi.org/10.1186/s12977-014-0070-3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Novis CL, Archin NM, Buzon MJ, Verdin E, Round JL, Lichterfeld M, Margolis DM, Planelles V, Bosque A (2013) Reactivation of latent HIV-1 in central memory CD4(+) T cells through TLR-1/2 stimulation. Retrovirology 10:119. https://doi.org/10.1186/1742-4690-10-119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bosque A, Nilson KA, Macedo AB, Spivak AM, Archin NM, Van Wagoner RM, Martins LJ, Novis CL, Szaniawski MA, Ireland CM, Margolis DM, Price DH, Planelles V (2017) Benzotriazoles reactivate latent HIV-1 through inactivation of STAT5 SUMOylation. Cell Rep 18(5):1324–1334. https://doi.org/10.1016/j.celrep.2017.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Macedo AB, Novis CL, De Assis CM, Sorensen ES, Moszczynski P, Huang SH, Ren Y, Spivak AM, Jones RB, Planelles V, Bosque A (2018) Dual TLR2 and TLR7 agonists as HIV latency-reversing agents. JCI Insight 3(19):e122673. https://doi.org/10.1172/jci.insight.122673

    Article  PubMed Central  Google Scholar 

  13. Spina CA, Anderson J, Archin NM, Bosque A, Chan J, Famiglietti M, Greene WC, Kashuba A, Lewin SR, Margolis DM, Mau M, Ruelas D, Saleh S, Shirakawa K, Siliciano RF, Singhania A, Soto PC, Terry VH, Verdin E, Woelk C, Wooden S, Xing S, Planelles V (2013) An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 9(12):e1003834. https://doi.org/10.1371/journal.ppat.1003834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duverger A, Wolschendorf F, Anderson JC, Wagner F, Bosque A, Shishido T, Jones J, Planelles V, Willey C, Cron RQ, Kutsch O (2014) Kinase control of latent HIV-1 infection: PIM-1 kinase as a major contributor to HIV-1 reactivation. J Virol 88(1):364–376. https://doi.org/10.1128/JVI.02682-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Larson EC, Novis CL, Martins LJ, Macedo AB, Kimball KE, Bosque A, Planelles V, Barrows LR (2017) Mycobacterium tuberculosis reactivates latent HIV-1 in T cells in vitro. PLoS One 12 (9):e0185162. https://doi.org/10.1371/journal.pone.0185162

  16. White CH, Moesker B, Beliakova-Bethell N, Martins LJ, Spina CA, Margolis DM, Richman DD, Planelles V, Bosque A, Woelk CH (2016) Transcriptomic analysis implicates the p53 signaling pathway in the establishment of HIV-1 latency in central memory CD4 T cells in an in vitro model. PLoS Pathog 12(11):e1006026. https://doi.org/10.1371/journal.ppat.1006026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wolschendorf F, Bosque A, Shishido T, Duverger A, Jones J, Planelles V, Kutsch O (2012) Kinase control prevents HIV-1 reactivation in spite of high levels of induced NF-kappaB activity. J Virol 86(8):4548–4558. https://doi.org/10.1128/JVI.06726-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Budhiraja S, Famiglietti M, Bosque A, Planelles V, Rice AP (2013) Cyclin T1 and CDK9 T-loop phosphorylation are downregulated during establishment of HIV-1 latency in primary resting memory CD4+ T cells. J Virol 87(2):1211–1220. https://doi.org/10.1128/JVI.02413-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gavegnano C, Detorio M, Montero C, Bosque A, Planelles V, Schinazi RF (2014) Ruxolitinib and tofacitinib are potent and selective inhibitors of HIV-1 replication and virus reactivation in vitro. Antimicrob Agents Chemother 58(4):1977–1986. https://doi.org/10.1128/AAC.02496-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saayman S, Ackley A, Turner AW, Famiglietti M, Bosque A, Clemson M, Planelles V, Morris KV (2014) An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol Ther 22(6):1164–1175. https://doi.org/10.1038/mt.2014.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trypsteen W, White CH, Mukim A, Spina CA, De Spiegelaere W, Lefever S, Planelles V, Bosque A, Woelk CH, Vandekerckhove L, Beliakova-Bethell N (2019) Long non-coding RNAs and latent HIV - a search for novel targets for latency reversal. PLoS One 14(11):e0224879. https://doi.org/10.1371/journal.pone.0224879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murry JP, Godoy J, Mukim A, Swann J, Bruce JW, Ahlquist P, Bosque A, Planelles V, Spina CA, Young JA (2014) Sulfonation pathway inhibitors block reactivation of latent HIV-1. Virology 471-473:1–12. https://doi.org/10.1016/j.virol.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  23. Bosque A, Famiglietti M, Weyrich AS, Goulston C, Planelles V (2011) Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells. PLoS Pathog 7(10):e1002288. https://doi.org/10.1371/journal.ppat.1002288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ren Y, Huang SH, Patel S, Conce Alberto WD, Magat D, Ahimovic DJ, Macedo AB, Durga R, Chan D, Zale E, Mota TM, Truong R, Rohwetter T, McCann CD, Kovacs CM, Benko E, Wimpelberg A, Cannon CM, Hardy WD, Bosque A, Bollard CM, Jones RB (2020) BCL-2 antagonism sensitizes cytotoxic t cell-resistant hiv reservoirs to elimination ex vivo. J Clin Invest 130(5):2542–2559. https://doi.org/10.1172/JCI132374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang SH, Ren Y, Thomas AS, Chan D, Mueller S, Ward AR, Patel S, Bollard CM, Cruz CR, Karandish S, Truong R, Macedo AB, Bosque A, Kovacs C, Benko E, Piechocka-Trocha A, Wong H, Jeng E, Nixon DF, Ho YC, Siliciano RF, Walker BD, Jones RB (2018) Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. J Clin Invest 128(2):876–889. https://doi.org/10.1172/JCI97555

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sunshine S, Kirchner R, Amr SS, Mansur L, Shakhbatyan R, Kim M, Bosque A, Siliciano RF, Planelles V, Hofmann O, Ho Sui S, Li JZ (2016) HIV integration site analysis of cellular models of HIV latency with a probe-enriched next-generation sequencing assay. J Virol 90(9):4511–4519. https://doi.org/10.1128/JVI.01617-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lusic M, Marini B, Ali H, Lucic B, Luzzati R, Giacca M (2013) Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+ T cells. Cell Host Microbe 13(6):665–677. https://doi.org/10.1016/j.chom.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  28. Sherrill-Mix S, Lewinski MK, Famiglietti M, Bosque A, Malani N, Ocwieja KE, Berry CC, Looney D, Shan L, Agosto LM, Pace MJ, Siliciano RF, O’Doherty U, Guatelli J, Planelles V, Bushman FD (2013) HIV latency and integration site placement in five cell-based models. Retrovirology 10:90. https://doi.org/10.1186/1742-4690-10-90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nguyen K, Das B, Dobrowolski C, Karn J (2017) Multiple histone lysine methyltransferases are required for the establishment and maintenance of HIV-1 latency. MBio 8(1):e00133-17. https://doi.org/10.1128/mBio.00133-17

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dobrowolski C, Valadkhan S, Graham AC, Shukla M, Ciuffi A, Telenti A, Karn J (2019) Entry of polarized effector cells into quiescence forces HIV latency. MBio 10(2):e00337-19. https://doi.org/10.1128/mBio.00337-19

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thomas AS, Jones KL, Gandhi RT, McMahon DK, Cyktor JC, Chan D, Huang SH, Truong R, Bosque A, Macedo AB, Kovacs C, Benko E, Eron JJ, Bosch RJ, Lalama CM, Simmens S, Walker BD, Mellors JW, Jones RB (2017) T-cell responses targeting HIV Nef uniquely correlate with infected cell frequencies after long-term antiretroviral therapy. PLoS Pathog 13(9):e1006629. https://doi.org/10.1371/journal.ppat.1006629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garcia JV, Miller AD (1991) Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature 350(6318):508–511. https://doi.org/10.1038/350508a0

    Article  CAS  PubMed  Google Scholar 

  33. Willey RL, Maldarelli F, Martin MA, Strebel K (1992) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66(12):7193–7200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank Indra Sarabia and Amanda B. Macedo for their input in the writing and proofreading of the manuscript. The work in A.B.’s lab is currently supported by the National Institute of Allergy and Infectious Diseases and National Institute of Health grants R01-AI124722, R21/R33-AI116212, R01-AI147845, UM1-AI126617, and P30-AI117970.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bosque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bosque, A. (2022). The Cultured TCM Model of HIV Latency. In: Poli, G., Vicenzi, E., Romerio, F. (eds) HIV Reservoirs. Methods in Molecular Biology, vol 2407. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1871-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1871-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1870-7

  • Online ISBN: 978-1-0716-1871-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics