Skip to main content

U1 and OM10.1. Myeloid Cell Lines as Surrogate Models of Reversible Proviral Latency

  • Protocol
  • First Online:
HIV Reservoirs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2407))

Abstract

As already discussed for T cell lines, also myeloid cell lines as served as the earliest models of chronic HIV infection. They were particularly relevant in the late 1980s and early 1990s when most experimental in vitro infections were based on laboratory-adapted “T-cell tropic” strains of HIV-1, such as LAI/IIIB or others, that later were found to rely upon CXCR4 as coreceptor for viral entry in addition to CD4 as primary receptor. Although primary macrophages do express CXCR4 together with CD4, virus replication is much less efficient than that observed with CCR5-using “macrophage-tropic” strains, as discussed separately in this book. Although different myeloid cell lines have been used to generate models of chronic HIV-1 infection that could be used to investigate features of proviral reactivation, as reviewed in (Cassol et al. J Leukoc Biol 80:1018–1030, 2006), two cell lines in particular have been broadly used and will be here discussed: the U937-derived U1 and HL-60–derived OM-10.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folks TM, Justement J, Kinter A, Dinarello CA, Fauci AS (1987) Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 238(4828):800–802. https://doi.org/10.1126/science.3313729

    Article  CAS  PubMed  Google Scholar 

  2. Emiliani S, Fischle W, Ott M, Van Lint C, Amella CA, Verdin E (1998) Mutations in the tat gene are responsible for human immunodeficiency virus type 1 postintegration latency in the U1 cell line. J Virol 72(2):1666–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cannon P, Kim SH, Ulich C, Kim S (1994) Analysis of tat function in human immunodeficiency virus type 1-infected low-level-expression cell lines U1 and ACH-2. J Virol 68(3):1993–1997. https://doi.org/10.1128/JVI.68.3.1993-1997.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Folks TM, Justement J, Kinter A, Schnittman S, Orenstein J, Poli G, Fauci AS (1988) Characterization of a promonocyte clone chronically infected with HIV and inducible by 13-phorbol-12-myristate acetate. J Immunol 140(4):1117–1122

    CAS  PubMed  Google Scholar 

  5. Griffin GE, Leung K, Folks TM, Kunkel S, Nabel GJ (1989) Activation of HIV gene expression during monocyte differentiation by induction of NF-kappa B. Nature 339(6219):70–73. https://doi.org/10.1038/339070a0

    Article  CAS  PubMed  Google Scholar 

  6. Cassol E, Alfano M, Biswas P, Poli G (2006) Monocyte-derived macrophages and myeloid cell lines as targets of HIV-1 replication and persistence. J Leukoc Biol 80(5):1018–1030. https://doi.org/10.1189/jlb.0306150

    Article  CAS  PubMed  Google Scholar 

  7. Poli G, Bressler P, Kinter A, Duh E, Timmer WC, Rabson A, Justement JS, Stanley S, Fauci AS (1990) Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor alpha by transcriptional and post-transcriptional mechanisms. J Exp Med 172(1):151–158. https://doi.org/10.1084/jem.172.1.151

    Article  CAS  PubMed  Google Scholar 

  8. Rizzi C, Crippa MP, Jeeninga RE, Berkhout B, Blasi F, Poli G, Alfano M (2006) Pertussis toxin B-oligomer suppresses IL-6 induced HIV-1 and chemokine expression in chronically infected U1 cells via inhibition of activator protein 1. J Immunol 176(2):999–1006. https://doi.org/10.4049/jimmunol.176.2.999

    Article  CAS  PubMed  Google Scholar 

  9. Poli G, Orenstein JM, Kinter A, Folks TM, Fauci AS (1989) Interferon-alpha but not AZT suppresses HIV expression in chronically infected cell lines. Science 244(4904):575–577. https://doi.org/10.1126/science.2470148

    Article  CAS  PubMed  Google Scholar 

  10. Hotter D, Sauter D, Kirchhoff F (2013) Emerging role of the host restriction factor tetherin in viral immune sensing. J Mol Biol 425(24):4956–4964. https://doi.org/10.1016/j.jmb.2013.09.029

    Article  CAS  PubMed  Google Scholar 

  11. Poli G, Kinter AL, Justement JS, Bressler P, Kehrl JH, Fauci AS (1992) Retinoic acid mimics transforming growth factor beta in the regulation of human immunodeficiency virus expression in monocytic cells. Proc Natl Acad Sci U S A 89(7):2689–2693. https://doi.org/10.1073/pnas.89.7.2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Poli G, Kinter A, Justement JS, Kehrl JH, Bressler P, Stanley S, Fauci AS (1990) Tumor necrosis factor alpha functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proc Natl Acad Sci U S A 87(2):782–785. https://doi.org/10.1073/pnas.87.2.782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goletti D, Kinter AL, Hardy EC, Poli G, Fauci AS (1996) Modulation of endogenous IL-1 beta and IL-1 receptor antagonist results in opposing effects on HIV expression in chronically infected monocytic cells. J Immunol 156(9):3501–3508

    CAS  PubMed  Google Scholar 

  14. Goletti D, Kinter AL, Coccia EM, Battistini A, Petrosillo N, Ippolito G, Poli G (2002) Interleukin (IL)-4 inhibits phorbol-ester induced HIV-1 expression in chronically infected U1 cells independently from the autocrine effect of endogenous tumour necrosis factor-alpha, IL-1beta, and IL-1 receptor antagonist. Cytokine 17(1):28–35. https://doi.org/10.1006/cyto.2001.0989

    Article  CAS  PubMed  Google Scholar 

  15. Biswas P, Poli G, Kinter AL, Justement JS, Stanley SK, Maury WJ, Bressler P, Orenstein JM, Fauci AS (1992) Interferon gamma induces the expression of human immunodeficiency virus in persistently infected promonocytic cells (U1) and redirects the production of virions to intracytoplasmic vacuoles in phorbol myristate acetate-differentiated U1 cells. J Exp Med 176(3):739–750. https://doi.org/10.1084/jem.176.3.739

    Article  CAS  PubMed  Google Scholar 

  16. Graziano F, Desdouits M, Garzetti L, Podini P, Alfano M, Rubartelli A, Furlan R, Benaroch P, Poli G (2015) Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages. Proc Natl Acad Sci U S A 112(25):E3265–E3273. https://doi.org/10.1073/pnas.1500656112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Symons J, Chopra A, Malatinkova E, De Spiegelaere W, Leary S, Cooper D, Abana CO, Rhodes A, Rezaei SD, Vandekerckhove L, Mallal S, Lewin SR, Cameron PU (2017) HIV integration sites in latently infected cell lines: evidence of ongoing replication. Retrovirology 14(1):2. https://doi.org/10.1186/s12977-016-0325-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kameoka M, Tanaka Y, Ota K, Itaya A, Yoshihara K (1999) Poly (ADP-ribose) polymerase is involved in PMA-induced activation of HIV-1 in U1 cells by modulating the LTR function. Biochem Biophys Res Commun 262(1):285–289. https://doi.org/10.1006/bbrc.1999.1146

    Article  CAS  PubMed  Google Scholar 

  19. Barcellini W, Colombo G, La Maestra L, Clerici G, Garofalo L, Brini AT, Lipton JM, Catania A (2000) Alpha-melanocyte-stimulating hormone peptides inhibit HIV-1 expression in chronically infected promonocytic U1 cells and in acutely infected monocytes. J Leukoc Biol 68(5):693–699

    CAS  PubMed  Google Scholar 

  20. Yang X, Gold MO, Tang DN, Lewis DE, Aguilar-Cordova E, Rice AP, Herrmann CH (1997) TAK, an HIV tat-associated kinase, is a member of the cyclin-dependent family of protein kinases and is induced by activation of peripheral blood lymphocytes and differentiation of promonocytic cell lines. Proc Natl Acad Sci U S A 94(23):12331–12336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayes MM, Lane BR, King SR, Markovitz DM, Coffey MJ (2002) Peroxisome proliferator-activated receptor gamma agonists inhibit HIV-1 replication in macrophages by transcriptional and post-transcriptional effects. J Biol Chem 277(19):16913–16919. https://doi.org/10.1074/jbc.M200875200

    Article  CAS  PubMed  Google Scholar 

  22. Alamer E, Zhong C, Liu Z, Niu Q, Long F, Guo L, Gelman BB, Soong L, Zhou J, Hu H (2020) Epigenetic suppression of HIV in myeloid cells by the BRD4-selective small molecule modulator ZL0580. J Virol 94(11):e01880–e01819. https://doi.org/10.1128/JVI.01880-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patel P, Ansari MY, Bapat S, Thakar M, Gangakhedkar R, Jameel S (2014) The microRNA miR-29a is associated with human immunodeficiency virus latency. Retrovirology 11:108. https://doi.org/10.1186/s12977-014-0108-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horie R, Ishida T, Maruyama-Nagai M, Ito K, Watanabe M, Yoneyama A, Higashihara M, Kimura S, Watanabe T (2007) TRAF activation of C/EBPbeta (NF-IL6) via p38 MAPK induces HIV-1 gene expression in monocytes/macrophages. Microbes Infect 9(6):721–728. https://doi.org/10.1016/j.micinf.2007.02.017

    Article  CAS  PubMed  Google Scholar 

  25. Amet T, Nonaka M, Dewan MZ, Saitoh Y, Qi X, Ichinose S, Yamamoto N, Yamaoka S (2008) Statin-induced inhibition of HIV-1 release from latently infected U1 cells reveals a critical role for protein prenylation in HIV-1 replication. Microbes Infect 10(5):471–480. https://doi.org/10.1016/j.micinf.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  26. Jeanson L, Mouscadet JF (2002) Ku represses the HIV-1 transcription: identification of a putative Ku binding site homologous to the mouse mammary tumor virus NRE1 sequence in the HIV-1 long terminal repeat. J Biol Chem 277(7):4918–4924. https://doi.org/10.1074/jbc.M110830200

    Article  CAS  PubMed  Google Scholar 

  27. Oguariri RM, Brann TW, Imamichi T (2007) Hydroxyurea and interleukin-6 synergistically reactivate HIV-1 replication in a latently infected promonocytic cell line via SP1/SP3 transcription factors. J Biol Chem 282(6):3594–3604. https://doi.org/10.1074/jbc.M608150200

    Article  CAS  PubMed  Google Scholar 

  28. Butera ST, Roberts BD, Critchfield JW, Fang G, McQuade T, Gracheck SJ, Folks TM (1995) Compounds that target novel cellular components involved in HIV-1 transcription. Mol Med 1(7):758–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rabbi MF, Al-Harthi L, Roebuck KA (1997) TNFalpha cooperates with the protein kinase a pathway to synergistically increase HIV-1 LTR transcription via downstream TRE-like cAMP response elements. Virology 237(2):422–429. https://doi.org/10.1006/viro.1997.8798

    Article  CAS  PubMed  Google Scholar 

  30. Roberts BD, Fang G, Butera ST (1997) Influence of cell cycle on HIV-1 expression differs among various models of chronic infection. Arch Virol 142(6):1087–1099. https://doi.org/10.1007/s007050050144

    Article  CAS  PubMed  Google Scholar 

  31. Moar P, Sushmita K, Kateriya S, Tandon R (2020) Transcriptional profiling indicates cAMP-driven reversal of HIV latency in monocytes occurs via transcription factor SP-1. Virology 542:40–53. https://doi.org/10.1016/j.virol.2020.01.006

    Article  CAS  PubMed  Google Scholar 

  32. Della Chiara G, Crotti A, Liboi E, Giacca M, Poli G, Lusic M (2011) Negative regulation of HIV-1 transcription by a heterodimeric NF-kappaB1/p50 and C-terminally truncated STAT5 complex. J Mol Biol 410(5):933–943. https://doi.org/10.1016/j.jmb.2011.03.044

    Article  CAS  PubMed  Google Scholar 

  33. Wen J, Yan M, Liu Y, Li J, Xie Y, Lu Y, Kamata M, Chen IS (2016) Specific elimination of latently HIV-1 infected cells using HIV-1 protease-sensitive toxin Nanocapsules. PLoS One 11(4):e0151572. https://doi.org/10.1371/journal.pone.0151572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Simoes JA, Hashemi FB, Aroutcheva AA, Heimler I, Spear GT, Shott S, Faro S (2001) Human immunodeficiency virus type 1 stimulatory activity by Gardnerella vaginalis: relationship to biotypes and other pathogenic characteristics. J Infect Dis 184(1):22–27. https://doi.org/10.1086/321002

    Article  CAS  PubMed  Google Scholar 

  35. Savarino A, Mai A, Norelli S, El Daker S, Valente S, Rotili D, Altucci L, Palamara AT, Garaci E (2009) "shock and kill" effects of class I-selective histone deacetylase inhibitors in combination with the glutathione synthesis inhibitor buthionine sulfoximine in cell line models for HIV-1 quiescence. Retrovirology 6:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mannick JB, Stamler JS, Teng E, Simpson N, Lawrence J, Jordan J, Finberg RW (1999) Nitric oxide modulates HIV-1 replication. J Acquir Immune Defic Syndr 22(1):1–9. https://doi.org/10.1097/00042560-199909010-00001

    Article  CAS  PubMed  Google Scholar 

  37. Kim V, Mears BM, Powell BH, Witwer KW (2017) Mutant Cas9-transcriptional activator activates HIV-1 in U1 cells in the presence and absence of LTR-specific guide RNAs. Matters (Zur) 2017. https://doi.org/10.19185/matters.201611000027

  38. Fujinaga K, Zhong Q, Nakaya T, Kameoka M, Meguro T, Yamada K, Ikuta K (1995) Extracellular Nef protein regulates productive HIV-1 infection from latency. J Immunol 155(11):5289–5298

    CAS  PubMed  Google Scholar 

  39. Varin A, Decrion AZ, Sabbah E, Quivy V, Sire J, Van Lint C, Roques BP, Aggarwal BB, Herbein G (2005) Synthetic Vpr protein activates activator protein-1, c-Jun N-terminal kinase, and NF-kappaB and stimulates HIV-1 transcription in promonocytic cells and primary macrophages. J Biol Chem 280(52):42557–42567. https://doi.org/10.1074/jbc.M502211200

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Sun B, Mbondji C, Biswas S, Zhao J, Hewlett I (2017) Differences in activation of HIV-1 replication by superinfection with HIV-1 and HIV-2 in U1 cells. J Cell Physiol 232(7):1746–1753. https://doi.org/10.1002/jcp.25614

    Article  CAS  PubMed  Google Scholar 

  41. Khan SZ, Hand N, Zeichner SL (2015) Apoptosis-induced activation of HIV-1 in latently infected cell lines. Retrovirology 12:42. https://doi.org/10.1186/s12977-015-0169-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gohda J, Suzuki K, Liu K, Xie X, Takeuchi H, Inoue JI, Kawaguchi Y, Ishida T (2018) BI-2536 and BI-6727, dual polo-like kinase/bromodomain inhibitors, effectively reactivate latent HIV-1. Sci Rep 8(1):3521. https://doi.org/10.1038/s41598-018-21942-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chandra PK, Gerlach SL, Wu C, Khurana N, Swientoniewski LT, Abdel-Mageed AB, Li J, Braun SE, Mondal D (2018) Mesenchymal stem cells are attracted to latent HIV-1-infected cells and enable virus reactivation via a non-canonical PI3K-NFkappaB signaling pathway. Sci Rep 8(1):14702. https://doi.org/10.1038/s41598-018-32657-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Laughlin MA, Chang GY, Oakes JW, Gonzalez-Scarano F, Pomerantz RJ (1995) Sodium butyrate stimulation of HIV-1 gene expression: a novel mechanism of induction independent of NF-kappa B. J Acquir Immune Defic Syndr Hum Retrovirol 9(4):332–339

    Article  CAS  PubMed  Google Scholar 

  45. Jin S, Liao Q, Chen J, Zhang L, He Q, Zhu H, Zhang X, Xu J (2018) TSC1 and DEPDC5 regulate HIV-1 latency through the mTOR signaling pathway. Emerg Microbes Infect 7(1):138. https://doi.org/10.1038/s41426-018-0139-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Besansky NJ, Butera ST, Sinha S, Folks TM (1991) Unintegrated human immunodeficiency virus type 1 DNA in chronically infected cell lines is not correlated with surface CD4 expression. J Virol 65(5):2695–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Butera ST, Perez VL, Wu BY, Nabel GJ, Folks TM (1991) Oscillation of the human immunodeficiency virus surface receptor is regulated by the state of viral activation in a CD4+ cell model of chronic infection. J Virol 65(9):4645–4653. https://doi.org/10.1128/JVI.65.9.4645-4653.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Butera ST, Roberts BD, Lam L, Hodge T, Folks TM (1994) Human immunodeficiency virus type 1 RNA expression by four chronically infected cell lines indicates multiple mechanisms of latency. J Virol 68(4):2726–2730. https://doi.org/10.1128/JVI.68.4.2726-2730.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Butera ST, Roberts BD, Folks TM (1996) Ligand passing by the p75 tumour necrosis factor receptor enhances HIV-1 activation. Cytokine 8(10):745–750. https://doi.org/10.1006/cyto.1996.0099

    Article  CAS  PubMed  Google Scholar 

  50. Butera ST, Roberts BD, Folks TM (1993) Regulation of HIV-1 expression by cytokine networks in a CD4+ model of chronic infection. J Immunol 150(2):625–634

    CAS  PubMed  Google Scholar 

  51. Critchfield JW, Butera ST, Folks TM (1996) Inhibition of HIV activation in latently infected cells by flavonoid compounds. AIDS Res Hum Retrovir 12(1):39–46. https://doi.org/10.1089/aid.1996.12.39

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Liu XY, De Clercq E (2009) Role of the HIV-1 positive elongation factor P-TEFb and inhibitors thereof. Mini Rev Med Chem 9(3):379–385. https://doi.org/10.2174/1389557510909030379

    Article  CAS  PubMed  Google Scholar 

  53. Teranishi F, Liu ZQ, Kunimatsu M, Imai K, Takeyama H, Manabe T, Sasaki M, Okamoto T (2003) Calpain is involved in the HIV replication from the latently infected OM10.1 cells. Biochem Biophys Res Commun 303(3):940–946. https://doi.org/10.1016/s0006-291x(03)00447-9

    Article  CAS  PubMed  Google Scholar 

  54. Fujiwara M, Okamoto M, Okamoto M, Watanabe M, Machida H, Shigeta S, Konno K, Yokota T, Baba M (1999) Acridone derivatives are selective inhibitors of HIV-1 replication in chronically infected cells. Antivir Res 43(3):189–199. https://doi.org/10.1016/s0166-3542(99)00045-5

    Article  CAS  PubMed  Google Scholar 

  55. Okamoto M, Hidaka A, Toyama M, Baba M (2019) Galectin-3 is involved in HIV-1 expression through NF-kappaB activation and associated with tat in latently infected cells. Virus Res 260:86–93. https://doi.org/10.1016/j.virusres.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  56. Okamoto M, Chono H, Hidaka A, Toyama M, Mineno J, Baba M (2020) Induction of E. coli-derived endonuclease MazF suppresses HIV-1 production and causes apoptosis in latently infected cells. Biochem Biophys Res Commun 530(3):597–602. https://doi.org/10.1016/j.bbrc.2020.07.103

    Article  CAS  PubMed  Google Scholar 

  57. Ammosova T, Berro R, Kashanchi F, Nekhai S (2005) RNA interference directed to CDK2 inhibits HIV-1 transcription. Virology 341(2):171–178. https://doi.org/10.1016/j.virol.2005.06.041

    Article  CAS  PubMed  Google Scholar 

  58. Traber KE, Okamoto H, Kurono C, Baba M, Saliou C, Soji T, Packer L, Okamoto T (1999) Anti-rheumatic compound aurothioglucose inhibits tumor necrosis factor-alpha-induced HIV-1 replication in latently infected OM10.1 and Ach2 cells. Int Immunol 11(2):143–150. https://doi.org/10.1093/intimm/11.2.143

    Article  CAS  PubMed  Google Scholar 

  59. Wang X, Yamataka K, Okamoto M, Ikeda S, Baba M (2007) Potent and selective inhibition of tat-dependent HIV-1 replication in chronically infected cells by a novel naphthalene derivative JTK-101. Antivir Chem Chemother 18(4):201–211. https://doi.org/10.1177/095632020701800404

    Article  CAS  PubMed  Google Scholar 

  60. Zhang JL, Sharma PL, Li CJ, Dezube BJ, Pardee AB, Crumpacker CS (1997) Topotecan inhibits human immunodeficiency virus type 1 infection through a topoisomerase-independent mechanism in a cell line with altered topoisomerase I. Antimicrob Agents Chemother 41(5):977–981. https://doi.org/10.1128/AAC.41.5.977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stevens M, Pollicita M, Pannecouque C, Verbeken E, Tabarrini O, Cecchetti V, Aquaro S, Perno CF, Fravolini A, De Clercq E, Schols D, Balzarini J (2007) Novel in vivo model for the study of human immunodeficiency virus type 1 transcription inhibitors: evaluation of new 6-desfluoroquinolone derivatives. Antimicrob Agents Chemother 51(4):1407–1413. https://doi.org/10.1128/AAC.01251-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Asamitsu K, Yamaguchi T, Nakata K, Hibi Y, Victoriano AF, Imai K, Onozaki K, Kitade Y, Okamoto T (2008) Inhibition of human immunodeficiency virus type 1 replication by blocking IkappaB kinase with noraristeromycin. J Biochem 144(5):581–589. https://doi.org/10.1093/jb/mvn104

    Article  CAS  PubMed  Google Scholar 

  63. Imai K, Togami H, Okamoto T (2010) Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J Biol Chem 285(22):16538–16545. https://doi.org/10.1074/jbc.M110.103531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Munier S, Delcroix-Genete D, Carthagena L, Gumez A, Hazan U (2005) Characterization of two candidate genes, NCoA3 and IRF8, potentially involved in the control of HIV-1 latency. Retrovirology 2:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Levy DN, Refaeli Y, MacGregor RR, Weiner DB (1994) Serum Vpr regulates productive infection and latency of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 91(23):10873–10877. https://doi.org/10.1073/pnas.91.23.10873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shattock RJ, Rizzardi GP, Hayes P, Griffin GE (1996) Engagement of adhesion molecules (CD18, CD11a, CD45, CD44, and CD58) enhances human immunodeficiency virus type 1 replication in monocytic cells through a tumor necrosis factor-modulated pathway. J Infect Dis 174(1):54–62. https://doi.org/10.1093/infdis/174.1.54

    Article  CAS  PubMed  Google Scholar 

  67. Harrison TS, Nong S, Levitz SM (1997) Induction of human immunodeficiency virus type 1 expression in monocytic cells by Cryptococcus neoformans and Candida albicans. J Infect Dis 176(2):485–491. https://doi.org/10.1086/514068

    Article  CAS  PubMed  Google Scholar 

  68. Papp B, Zhang D, Groopman JE, Byrn RA (1994) Stimulation of human immunodeficiency virus type 1 expression by ceramide. AIDS Res Hum Retrovir 10(7):775–780. https://doi.org/10.1089/aid.1994.10.775

    Article  CAS  PubMed  Google Scholar 

  69. Gozlan J, Lathey JL, Spector SA (1998) Human immunodeficiency virus type 1 induction mediated by genistein is linked to cell cycle arrest in G2. J Virol 72(10):8174–8180. https://doi.org/10.1128/JVI.72.10.8174-8180.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hashimoto K, Baba M, Gohnai K, Sato M, Shigeta S (1996) Heat shock induces HIV-1 replication in chronically infected promyelocyte cell line OM10.1. Arch Virol 141(3–4):439–447. https://doi.org/10.1007/BF01718308

    Article  CAS  PubMed  Google Scholar 

  71. Wang X, Liu J, Zhou L, Ho WZ (2019) Morphine withdrawal enhances HIV infection of macrophages. Front Immunol 10:2601. https://doi.org/10.3389/fimmu.2019.02601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Poli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Poli, G. (2022). U1 and OM10.1. Myeloid Cell Lines as Surrogate Models of Reversible Proviral Latency. In: Poli, G., Vicenzi, E., Romerio, F. (eds) HIV Reservoirs. Methods in Molecular Biology, vol 2407. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1871-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1871-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1870-7

  • Online ISBN: 978-1-0716-1871-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics