Skip to main content

Rapid Rational Design of Cyclic Peptides Mimicking Protein–Protein Interfaces

  • 1501 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2405)

Abstract

The cPEPmatch approach is a rapid computational methodology for the rational design of cyclic peptides to target desired regions of protein–protein interfaces. The method selects cyclic peptides that structurally match backbone structures of short segments at a protein–protein interface. In a second step, the cyclic peptides act as templates for designed binders by adapting the amino acid side chains to the side chains found in the target complex. A link to access the different tools that comprise the cPEPmatch method and a detailed step-by-step guide is provided. We outline the protocol by following the application to a trypsin protease in complex with the bovine inhibitor protein (BPTI). An extension of our original approach is also presented, where we give a detailed description of the usage of the cPEPmatch methodology focusing on identifying hot regions of protein–protein interfaces prior to the matching. This extension allows one to reduce the amount of evaluated putative cyclic peptides and to specifically design only those that compete with the strongest protein–protein binding regions. It is illustrated by an application to an MHC class I protein complex.

Key words

  • Protein–protein interactions
  • Protein interaction inhibition
  • Protein binding modulation
  • Peptidomimetics
  • Cyclic peptide design
  • Drug design with cyclic peptides
  • Rational cyclic peptide binders

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fontaine F, Overman J, François M (2015) Pharmacological manipulation of transcription factor protein-protein interactions: opportunities and obstacles. Cell Regen 4:2

    CrossRef  Google Scholar 

  2. Bahadur RP, Zacharias M (2018) The interface of protein-protein complexes: analysis of contacts and prediction of interactions. Cell Mol Life Sci 65:1059–1072. https://doi.org/10.1007/s00018-007-7451-x

    CrossRef  CAS  Google Scholar 

  3. Murray JK, Gellman SH (2007) Targeting protein–protein interactions: lessons from p53/MDM2. Biopolymers 88:657–686. https://doi.org/10.1002/bip.20741

    CrossRef  CAS  PubMed  Google Scholar 

  4. Corbi-Verge C, Kim PM (2016) Motif mediated protein-protein interactions as drug targets. Cell Commun Signal 14:8

    CrossRef  Google Scholar 

  5. Conte LL, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285:2177–2198. https://doi.org/10.1006/jmbi.1998.2439

    CrossRef  PubMed  Google Scholar 

  6. Keskin O, Ma B, Nussinov R (2005) Hot regions in protein-protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol 345:1281–1294. https://doi.org/10.1016/j.jmb.2004.10.077

    CrossRef  CAS  PubMed  Google Scholar 

  7. Metz A, Pfleger C, Kopitz H et al (2012) Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface. J Chem Inf Model 52:120–133. https://doi.org/10.1021/ci200322s

    CrossRef  CAS  PubMed  Google Scholar 

  8. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009. https://doi.org/10.1038/nature06526

    CrossRef  CAS  PubMed  Google Scholar 

  9. Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21:1102–1114. https://doi.org/10.1016/j.chembiol.2014.09.001

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qiu Y, Li X, He X et al (2020) Computational methods-guided design of modulators targeting protein-protein interactions (PPIs). Eur J Med Chem 207:112764. https://doi.org/10.1016/j.ejmech.2020.112764

    CrossRef  CAS  PubMed  Google Scholar 

  11. Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 15:533–550. https://doi.org/10.1038/nrd.2016.29

    CrossRef  CAS  PubMed  Google Scholar 

  12. Andrei SA, de Vink P, Sijbesma E et al (2018) Rationally designed semisynthetic natural product analogues for stabilization of 14-3-3 protein-protein interactions. Angew Chemie 130:13658–13662. https://doi.org/10.1002/ange.201806584

    CrossRef  Google Scholar 

  13. Santini BL, Zacharias M (2020) Rapid in silico design of potential cyclic peptide binders targeting protein-protein interfaces. Front Chem 8:2134. https://doi.org/10.3389/fchem.2020.573259

    CrossRef  CAS  Google Scholar 

  14. Duffy FJ, Devocelle M, DCS (2015) Computational approaches to developing short cyclic peptide modulators of protein–protein interactions. Methods Mol Biol 1268:241–271. https://doi.org/10.1007/978-1-4939-2285-7_11

    CrossRef  CAS  PubMed  Google Scholar 

  15. Case DA, Belfon K, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE III, Cruzeiro VWD, Darden TA, Duke RE, Giambasu G, Gilson MK, Gohlke H, Goetz AW, Harris R, Izadi S, Izmailov SA, Kasavajhala K, Kovalenko A, Krasny R, York DM, Kollman PA (2018) AMBER 2018. University of California, San Francisco

    Google Scholar 

  16. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    CrossRef  CAS  Google Scholar 

  18. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    CrossRef  CAS  Google Scholar 

  19. Wang C, Greene D, Xiao L et al (2018) Recent developments and applications of the MMPBSA method. Front Mol Biosci 4:201–215

    CrossRef  Google Scholar 

  20. Maenaka K, Jones Y (1999) MHC superfamily structure and the immune system. Curr Opin Struct Biol 9:745–753

    CrossRef  CAS  Google Scholar 

  21. Montealegre S, Venugopalan V, Fritzsche S et al (2015) Dissociation of β2-microglobulin determines the surface quality control of major histocompatibility complex class I molecules. FASEB J 29:2780–2788. https://doi.org/10.1096/fj.14-268094

    CrossRef  CAS  PubMed  Google Scholar 

  22. Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330:891–913. https://doi.org/10.1016/S0022-2836(03)00610-7

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was conducted within the Max Planck School Matter to Life supported by the German Federal Ministry of Education and Research (BMBF) in collaboration with the Max Planck Society. We acknowledge also support by the Leibniz super computer (LRZ) center for providing supercomputer support by grant pr27za.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zacharias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Santini, B.L., Zacharias, M. (2022). Rapid Rational Design of Cyclic Peptides Mimicking Protein–Protein Interfaces. In: Simonson, T. (eds) Computational Peptide Science. Methods in Molecular Biology, vol 2405. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1855-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1855-4_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1854-7

  • Online ISBN: 978-1-0716-1855-4

  • eBook Packages: Springer Protocols