Shi Y, Kim S (2014) Towards information analysis for big data. In: 2014 7th conference on Control and automation (CA). IEEE, Piscataway, pp 3–5
Google Scholar
Gupta A (2015) Big data analysis using computational intelligence and Hadoop: a study. In: 2015 2nd international conference on computing for sustainable global development (INDIACom). IEEE, Piscataway, pp 1397–1401
Google Scholar
Ceri S, Kaitoua A, Masseroli M, Pinoli P, Venco F (2016) Data management for heterogeneous genomic datasets. IEEE/ACM Trans Comput Biol Bioinform 14(6):1251–1264
PubMed
Google Scholar
Kench A, Janeja VP, Yesha Y, Rishe N, Grasso MA, Niskar A (2015) Clinico-genomic data analytics for precision diagnosis and disease management. In: 2015 international conference on healthcare informatics (ICHI). IEEE, Piscataway, pp 263–271
Google Scholar
Zieba A, Grannas K, Söderberg O, Gullberg M, Nilsson M, Landegren U (2012) Molecular tools for companion diagnostics. New Biotechnol 29(6):634–640
CAS
Google Scholar
Ascolani G, Occhipinti A, Liò P (2015) Modelling circulating tumour cells for personalised survival prediction in metastatic breast cancer. PLoS Comput Biol 11(5):e1004
Google Scholar
Rieger PT (2004) The biology of cancer genetics. In: Seminars in oncology nursing, vol 20. Elsevier, Amsterdam, pp 145–154
Google Scholar
Moorcraft SY, Gonzalez D, Walker BA (2015) Understanding next generation sequencing in oncology: a guide for oncologists. Crit Rev Oncol/Hematol 96(3):463–474
Google Scholar
Bertram JS (2000) The molecular biology of cancer. Mol Aspects Med 21(6):167–223
CAS
PubMed
Google Scholar
Schatz MC, Langmead B (2013) The DNA data deluge. IEEE Spectr 50(7):28–33
Google Scholar
Eyassu F, Angione C (2017) Modelling pyruvate dehydrogenase under hypoxia and its role in cancer metabolism. R Soc Open Sci 4(10):170
Google Scholar
Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47
CAS
PubMed
PubMed Central
Google Scholar
Pacheco MP, Bintener T, Sauter T (2019) Towards the network-based prediction of repurposed drugs using patient-specific metabolic models. EBioMedicine 43:26–27
PubMed
PubMed Central
Google Scholar
Martin SD, McGee SL (2019) A systematic flux analysis approach to identify metabolic vulnerabilities in human breast cancer cell lines. Cancer Metab 7(1):12
PubMed
PubMed Central
Google Scholar
Edwards LM (2017) Metabolic systems biology: a brief primer. J Physiol 595(9):2849–2855
CAS
PubMed
PubMed Central
Google Scholar
Palsson B (2015) Systems biology. Cambridge University Press, Cambridge
Google Scholar
Angione C (2019) Human systems biology and metabolic modelling: a review—from disease metabolism to precision medicine. BioMed Res Int 2019:8304260
PubMed
PubMed Central
Google Scholar
Ryu JY, Kim HU, Lee SY (2017) Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism. Proc Nat Acad Sci 114(45):E9740–E9749
CAS
PubMed
PubMed Central
Google Scholar
Angione C (2018) Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism. Bioinformatics 34(3):494–501
CAS
PubMed
Google Scholar
Montanari P, Bartolini I, Ciaccia P, Patella M, Ceri S, Masseroli M (2016) Pattern similarity search in genomic sequences. IEEE Trans Knowl Data Eng 28(11):3053–3067
Google Scholar
Wang Xl, Li Jy, Liu Y, Wang Yf, Zhao Ds (2013) Building localized bioinformatics platform based on galaxy and high performance computing cluster. In: 2013 6th International Conference on Biomedical engineering and informatics (BMEI). IEEE, Piscataway, pp 712–716
Google Scholar
Belgrave D, Henderson J, Simpson A, Buchan I, Bishop C, Custovic A (2017) Disaggregating asthma: big investigation versus big data. J Allergy Clin Immunol 139(2):400–407
PubMed
PubMed Central
Google Scholar
Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam
Google Scholar
Kitchin R (2014) The data revolution: big data, open data, data infrastructures and their consequences. SAGE Publishing, Thousand Oaks
Google Scholar
Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85
CAS
PubMed
Google Scholar
Mardinoglu A, Nielsen J (2016) The impact of systems medicine on human health and disease. Fron Physiol 7:552
Google Scholar
Barrett CL, Kim TY, Kim HU, Palsson BØ, Lee SY (2006) Systems biology as a foundation for genome-scale synthetic biology. Curr Opin Biotechnol 17(5):488–492
CAS
PubMed
Google Scholar
Yurkovich JT, Palsson BO (2015) Solving puzzles with missing pieces: the power of systems biology. Proc IEEE 104(1):2–7
Google Scholar
Palsson BØ (2011) Systems biology: simulation of dynamic network states. Cambridge University Press, Cambridge
Google Scholar
Gomez-Cabrero D, Abugessaisa I, Maier D, Teschendorff A, Merkenschlager M, Gisel A, Ballestar E, Bongcam-Rudloff E, Conesa A, Tegnér J (2014) Data integration in the era of omics: current and future challenges. BMC Syst Biol 8(Suppl 2):I1
PubMed
PubMed Central
Google Scholar
Ivanov O, van der Schaft A, Weissing FJ (2016) Steady states and stability in metabolic networks without regulation. J Theor Biol 401:78–93
CAS
PubMed
Google Scholar
Nielsen J (2017) Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab 25(3):572–579
CAS
PubMed
Google Scholar
Joyce AR, Palsson BØ (2006) The model organism as a system: integrating ’omics’ data sets. Nat Rev Mol Cell Biol 7(3):198
CAS
PubMed
Google Scholar
Aurich MK, Fleming RM, Thiele I (2016) Metabotools: a comprehensive toolbox for analysis of genome-scale metabolic models. Front Physiol 7:327
PubMed
PubMed Central
Google Scholar
Bordbar A, Palsson BO (2012) Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J Internal Med 271(2):131–141
CAS
PubMed
Google Scholar
Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245
CAS
PubMed
PubMed Central
Google Scholar
O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161(5):971–987
PubMed
PubMed Central
Google Scholar
Di Filippo M, Colombo R, Damiani C, Pescini D, Gaglio D, Vanoni M, Alberghina L, Mauri G (2016) Zooming-in on cancer metabolic rewiring with tissue specific constraint-based models. Comput Biol Chem 62:60–69
PubMed
Google Scholar
Vivek-Ananth R, Samal A (2016) Advances in the integration of transcriptional regulatory information into genome-scale metabolic models. Biosystems 147:1–10
CAS
PubMed
Google Scholar
Yilmaz LS, Walhout AJ (2017) Metabolic network modeling with model organisms. Curr Opin Chem Biol 36:32–39
CAS
PubMed
PubMed Central
Google Scholar
Fernandes S, Robitaille J, Bastin G, Jolicoeur M, Wouwer AV (2016) Dynamic metabolic flux analysis of underdetermined and overdetermined metabolic networks. IFAC-PapersOnLine 49(26):318–323
Google Scholar
Rügen M, Bockmayr A, Steuer R (2015) Elucidating temporal resource allocation and diurnal dynamics in phototrophic metabolism using conditional FBA. Sci Rep 5:15,247
Google Scholar
Lularevic M, Racher AJ, Jaques C, Kiparissides A (2019) Improving the accuracy of flux balance analysis through the implementation of carbon availability constraints for intracellular reactions. Biotechnol Bioeng 116(9):2339–2352
CAS
PubMed
Google Scholar
Ataman M, Hatzimanikatis V (2015) Heading in the right direction: thermodynamics-based network analysis and pathway engineering. Curr Opin Biotechnol 36:176–182
CAS
PubMed
Google Scholar
Willemsen AM, Hendrickx DM, Hoefsloot HC, Hendriks MM, Wahl SA, Teusink B, Smilde AK, van Kampen AH (2015) MetDFBA: incorporating time-resolved metabolomics measurements into dynamic flux balance analysis. Mol BioSyst 11(1):137–145
CAS
PubMed
Google Scholar
Zhang Y, Rajapakse JC (2009) Machine learning in bioinformatics, vol 4. Wiley, London
Google Scholar
Leung MK, Delong A, Alipanahi B, Frey BJ (2016) Machine learning in genomic medicine: a review of computational problems and data sets. Proc IEEE 104(1):176–197
Google Scholar
Angermueller C, Pärnamaa T, Parts L, Stegle O (2016) Deep learning for computational biology. Mol Syst Biol 12(7):878
PubMed
PubMed Central
Google Scholar
Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics. Briefings Bioinform 18(5):851–869
Google Scholar
Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16(6):321
CAS
PubMed
PubMed Central
Google Scholar
Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, Ferrero E, Agapow PM, Zietz M, Hoffman MM, et al (2018) Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface 15(141):20170
Google Scholar
Zeng ISL, Lumley T (2018) Review of statistical learning methods in integrated omics studies (an integrated information science). Bioinform Biol Insights 12:1177932218759
Google Scholar
Horgan RP, Kenny LC (2011) ‘omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecol 13(3):189–195
Google Scholar
Biedendieck R, Borgmeier C, Bunk B, Stammen S, Scherling C, Meinhardt F, Wittmann C, Jahn D (2011) Systems biology of recombinant protein production using bacillus megaterium. In: Methods in enzymology, vol 500. Elsevier, Amsterdam, pp 165–195
Google Scholar
Fondi M, Liò P (2015) Multi-omics and metabolic modelling pipelines: challenges and tools for systems microbiology. Microbiol Res 171:52–64
CAS
PubMed
Google Scholar
Yurkovich JT, Palsson BO (2018) Quantitative-omic data empowers bottom-up systems biology. Curr Opin Biotechnol 51:130–136
CAS
PubMed
Google Scholar
Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23(7–8):2031–2038
Google Scholar
Vijayakumar S, Conway M, Lió P, Angione C (2018) Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling. Briefings Bioinform 19(6):1218–1235
CAS
Google Scholar
Serra A, Fratello M, Fortino V, Raiconi G, Tagliaferri R, Greco D (2015) MVDA: a multi-view genomic data integration methodology. BMC Bioinform 16(1):261
Google Scholar
Zampieri G, Vijayakumar S, Yaneske E, Angione C (2019) Machine and deep learning meet genome-scale metabolic modeling. PLoS Comput Biol 15(7):e1007
Google Scholar
Sertbas M, Ulgen KO (2018) Unlocking human brain metabolism by genome-scale and multiomics metabolic models: relevance for neurology research, health, and disease. OMICS: J Integr Biol 22(7):455–467
CAS
Google Scholar
Culley C, Vijayakumar S, Zampieri G, Angione C (2020) A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth. Proc Nat Acad Sci 117(31):18,869–18,879
CAS
Google Scholar
Tong L, Mitchel J, Chatlin K, Wang MD (2020) Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis. BMC Med Inform Decis Making 20(1):1–12
Google Scholar
Jhajharia S, Verma S, Kumar R (2016) Predictive analytics for breast cancer survivability: a comparison of five predictive models. In: Proceedings of the second international conference on information and communication technology for competitive strategies. ACM, New York, p 26
Google Scholar
Ma Z, Krings AW (2008) Survival analysis approach to reliability, survivability and prognostics and health management (PHM). In: 2008 IEEE aerospace conference. IEEE, Piscataway, pp 1–20
Google Scholar
Iuliano A, Occhipinti A, Angelini C, De Feis I, Lió P (2016) Cancer markers selection using network-based Cox regression: a methodological and computational practice. Front Physiol 7:208
PubMed
PubMed Central
Google Scholar
Iuliano A, Occhipinti A, Angelini C, De Feis I, Liò P (2018) Combining pathway identification and breast cancer survival prediction via screening-network methods. Front Genet 9:206
PubMed
PubMed Central
Google Scholar
Lee C, Zame WR, Yoon J, van der Schaar M (2018) Deephit: a deep learning approach to survival analysis with competing risks. In: AAAI, pp 2314–2321
Google Scholar
Wang P, Li Y, Reddy CK (2019) Machine learning for survival analysis: a survey. ACM Comput Surv 51(6):1–36
Google Scholar
Zupan B, DemšAr J, Kattan MW, Beck JR, Bratko I (2000) Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artif Intell Med 20(1):59–75
CAS
PubMed
Google Scholar
Harrell Jr FE, Lee KL, Califf RM, Pryor DB, Rosati RA (1984) Regression modelling strategies for improved prognostic prediction. Stat Med 3(2):143–152
PubMed
Google Scholar
Brier GW (1950) Verification of forecasts expressed in terms of probability. Mon Weather Rev 78(1):1–3
Google Scholar
Kleinbaum DG, Klein M (2010) Survival analysis. Springer, Berlin
Google Scholar
Nisbet R, Elder J, Miner G (2009) Basic algorithms for data mining: a brief overview. In: Handbook of statistical analysis and data mining applications, pp 121–150
Google Scholar
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge. https://www.deeplearningbook.org
Google Scholar
Xu J, Wu P, Chen Y, Meng Q, Dawood H, Dawood H (2019) A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data. BMC Bioinform 20(1):1–11
Google Scholar
Lemsara A, Ouadfel S, Fröhlich H (2020) Pathme: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data. BMC Bioinform 21:1–20
Google Scholar
Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv preprint arXiv:13126114
Google Scholar
Simidjievski N, Bodnar C, Tariq I, Scherer P, Andres Terre H, Shams Z, Jamnik M, Liò P (2019) Variational autoencoders for cancer data integration: design principles and computational practice. Front Genet 10:1205
PubMed
PubMed Central
Google Scholar
Liang M, Li Z, Chen T, Zeng J (2014) Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach. IEEE/ACM Trans Comput Biol Bioinform 12(4):928–937
Google Scholar
Sharifi-Noghabi H, Zolotareva O, Collins CC, Ester M (2019) Moli: multi-omics late integration with deep neural networks for drug response prediction. Bioinformatics 35(14):i501–i509
CAS
PubMed
PubMed Central
Google Scholar
Cheerla A, Gevaert O (2019) Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics 35(14):i446–i454
CAS
PubMed
PubMed Central
Google Scholar
Chen R, Yang L, Goodison S, Sun Y (2020) Deep-learning approach to identifying cancer subtypes using high-dimensional genomic data. Bioinformatics 36(5):1476–1483
CAS
PubMed
Google Scholar
Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FC, Clarke D, Gu M, Emani P, Yang YT, et al. (2018) Comprehensive functional genomic resource and integrative model for the human brain. Science 362(6420):eaat8464
Google Scholar
Qiu S, Joshi PS, Miller MI, Xue C, Zhou X, Karjadi C, Chang GH, Joshi AS, Dwyer B, Zhu S, et al (2020) Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain 143(6):1920–1933
PubMed
PubMed Central
Google Scholar
Cuperlovic-Culf M (2018) Machine learning methods for analysis of metabolic data and metabolic pathway modeling. Metabolites 8(1):4
PubMed Central
Google Scholar
Vijayakumar S, Conway M, Lió P, Angione C (2018) Optimization of multi-omic genome-scale models: methodologies, hands-on tutorial, and perspectives. In: Metabolic network reconstruction and modeling. Springer, Berlin, pp 389–408
Google Scholar
Lawson C, Martí JM, Radivojevic T, Jonnalagadda SVR, Gentz R, Hillson NJ, Peisert S, Kim J, Simmons BA, Petzold CJ, et al (2021) Machine learning for metabolic engineering: a review. Metab Eng 63(1):34–60
CAS
PubMed
Google Scholar
Ben Guebila M, Thiele I (2019) Predicting gastrointestinal drug effects using contextualized metabolic models. PLoS Comput Biol 15(6):e1007,100
CAS
Google Scholar
Guo W, Xu Y, Feng X (2017) Deepmetabolism: a deep learning system to predict phenotype from genome sequencing. arXiv preprint arXiv:170503094
Google Scholar
Ajjolli Nagaraja A, Fontaine N, Delsaut M, Charton P, Damour C, Offmann B, Grondin-Perez B, Cadet F (2019) Flux prediction using artificial neural network (ANN) for the upper part of glycolysis. PloS One 14(5):e0216,178
Google Scholar
Occhipinti A, Eyassu F, Rahman TJ, Rahman PK, Angione C (2018) In silico engineering of pseudomonas metabolism reveals new biomarkers for increased biosurfactant production. PeerJ 6:e6046
PubMed
PubMed Central
Google Scholar
Yaneske E, Angione C (2018) The poly-omics of ageing through individual-based metabolic modelling. BMC Bioinform 19(14):83–96
Google Scholar
Yang JH, Wright SN, Hamblin M, McCloskey D, Alcantar MA, Schrübbers L, Lopatkin AJ, Satish S, Nili A, Palsson BO, et al. (2019) A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell 177(6):1649–1661
CAS
PubMed
PubMed Central
Google Scholar
Vijayakumar S, Rahman PKMSM, Angione C (2020) A hybrid flux balance analysis and machine learning pipeline elucidates the metabolic response of cyanobacteria to different growth conditions. iScience 23(12):101818
Google Scholar
Kavvas ES, Yang L, Monk JM, Heckmann D, Palsson BO (2020) A biochemically-interpretable machine learning classifier for microbial GWAS. Nat Commun 11(1):1–11
Google Scholar
Occhipinti A, Hamadi Y, Kugler H, Wintersteiger C, Yordanov B, Angione C (2020) Discovering essential multiple gene effects through large scale optimization: an application to human cancer metabolism. IEEE/ACM Trans Comput Biol Bioinform. https://doi.org/10.1109/TCBB.2020.2973386
Zhang J, Petersen SD, Radivojevic T, Ramirez A, Pérez-Manríquez A, Abeliuk E, Sánchez BJ, Costello Z, Chen Y, Fero MJ, et al. (2020) Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nat Commun 11(1):1–13
Google Scholar
Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, Haraldsdóttir HS, Wachowiak J, Keating SM, Vlasov V, et al. (2019) Creation and analysis of biochemical constraint-based models using the cobra toolbox v. 3.0. Nat Protoc 14(3):639–702
CAS
PubMed
PubMed Central
Google Scholar
Angione C, Conway M, Lió P (2016) Multiplex methods provide effective integration of multi-omic data in genome-scale models. BMC Bioinform 17(4):257–269
Google Scholar
Tian M, Reed JL (2018) Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis. Bioinformatics 34(22):3882–3888
CAS
PubMed
PubMed Central
Google Scholar